Skip to main content
Log in

Effect of a solvent on self-organization in nanofilms: Modeling by the dissipative particle dynamics method

  • Theory and Modeling
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

Mesoscopic simulation of processes of drying and swelling of thin copolymer films on a solid substrate is performed. Structural rearrangements in films of symmetric and asymmetric diblock copolymers are studied by the dissipative particle dynamics method in the presence of both nonselective and selective solvents. The plasticizing effect of a solvent is favorable for formation of lamellar and hexagonal mesophases. Owing to evaporation of the solvent from a film or its absorption from the external volume, flows along the normal to the film surface arise. These flows exert an orienting effect on the microdomain structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sirringhaus, T. Kawase, R. H. Friend, et al., Science (Washington, D. C.) 290, 2123 (2000).

    Article  CAS  Google Scholar 

  2. K. W. Guarini, C. T. Black, Y. Zhang, et al., J. Vac. Technol., B 20, 2788 (2002).

    Article  CAS  Google Scholar 

  3. R. A. Segalman, Mater. Sci. Eng., Rep. 48(6), 191 (2005).

    Google Scholar 

  4. M. Park, P. M. Chaikin, R. A. Register, and D. H. Adamson, Appl. Phys. Lett. 79, 257 (2001).

    Article  CAS  Google Scholar 

  5. M. Li and C. K. Ober, Mater. Today 9(9), 30 (2006).

    Article  CAS  Google Scholar 

  6. T. Thurn-Albrecht, R. Steiner, J. DeRouchey, et al., Adv. Mater. (Weinheim, Fed. Repub. Ger.) 12, 787 (2000).

    Article  CAS  Google Scholar 

  7. H. Matsuyama, K. Ohga, and T. Maki, J. Chem. Eng. Jpn. 37, 558 (2004).

    Article  Google Scholar 

  8. Q. Zhang, T. Xu, D. Butterfield, et al., Nano Lett. 5, 357 (2005).

    Article  CAS  Google Scholar 

  9. J. Zhao, S. Jiang, X. Ji, et al. Polymer 46, 6513 (2005).

    Article  CAS  Google Scholar 

  10. L. Song and Y. M. Lam, Nanotechnology 18, 075304 (2007).

    Article  Google Scholar 

  11. X. Li, J. Peng, Y. Wen, et al., Polymer 48, 2434 (2007).

    Article  CAS  Google Scholar 

  12. E. Bormashenko, R. Pogreb, A. Musina, et al., J. Colloid Interface Sci. 297, 534 (2006).

    Article  CAS  Google Scholar 

  13. E. Bormashenko, R. Pogreb, O. Stanevsky, et al., Macromol. Mater. Eng. 290, 114 (2005).

    Article  CAS  Google Scholar 

  14. L. Weh and A. Ventur, J. Colloid Interface Sci. 271, 407 (2004).

    Article  CAS  Google Scholar 

  15. M. Srinivasarao, D. Collings, A. Philips, and S. Patel, Science (Washington, D. C.) 292, 79 (2001).

    Article  CAS  Google Scholar 

  16. Y. Xu, B. Zhu, and Y. Xu, Polymer 46, 713 (2005).

    Article  CAS  Google Scholar 

  17. H. Yabu, M. Takebayashi, M. Tanaka, and M. Shimomura, Langmuir 21, 3235 (2005).

    Article  CAS  Google Scholar 

  18. H. Yabu, M. Tanaka, K. Ijiro, and M. Shimomura, Langmuir 19, 6297 (2003).

    Article  CAS  Google Scholar 

  19. O. Karthaus, N. Maruyama, and X. Cieren, Langmuir 16, 6071 (2000).

    Article  CAS  Google Scholar 

  20. C. Y. Wu, T. H. Chiang, and C. C. Hsu, Opt. Express 16, 19978 (2008).

    Article  CAS  Google Scholar 

  21. E. H. Park, M. J. Kim, and Y. S. Kwon, Photon. Technol. Lett. 11, 439 (1999).

    Article  Google Scholar 

  22. S. I. Chang, J. B. Yoon, H. Kim, et al., Opt. Lett. 31, 3016 (2006).

    Article  Google Scholar 

  23. H. Hu and R. G. Larson, Langmuir 21, 3963 (2005).

    Article  CAS  Google Scholar 

  24. K. Ozawa, E. Nishitani, and M. Doi, J. Appl. Phys. 44, 4229 (2005).

    Article  CAS  Google Scholar 

  25. T. Okuzono, K. Ozawa, and M. Doi, Phys. Rev. Lett. 97, 136103 (2006).

    Article  Google Scholar 

  26. J. Fukai, H. Ishizuka, Y. Sakai, et al., Exp. Heat Transfer 20, 137 (2007).

    Article  CAS  Google Scholar 

  27. K. Ozawa, T. Okuzo, and M. Doi, J. Appl. Phys. 45, 8817 (2006).

    Article  CAS  Google Scholar 

  28. Y. Jung, T. Kajiya, T. Yamaue, and M. Doi, J. Appl. Phys. 48, 031502 (2009).

    Article  Google Scholar 

  29. T. P. Lodge, M. W. Hamersky, K. J. Hanley, and C. Huang, Macromolecules 30, 6139 (1997).

    Article  CAS  Google Scholar 

  30. M. L. Ionescu and A. Skoulios, Macromol. Chem. 177, 257 (1976).

    Article  CAS  Google Scholar 

  31. H. Lin, A. Steyerl, S. K. Satija, et al., Macromolecules 28, 1470 (1995).

    Article  CAS  Google Scholar 

  32. R. D. Peters, X. M. Yang, T. K. Kim, et al., Langmuir 16, 4625 (2000).

    Article  CAS  Google Scholar 

  33. S. H. Kim, M. J. Misner, L. Yang, et al., Macromolecules 39, 8473 (2006).

    Article  CAS  Google Scholar 

  34. T. Xu, C. J. Hawker, and T. P. Russell, Macromolecules 38, 2802 (2005).

    Article  CAS  Google Scholar 

  35. S. B. Darling, Prog. Polym. Sci. 32, 1152 (2007).

    Article  CAS  Google Scholar 

  36. M. Pinna, A. V. Zvelindovsky, S. Todd, and G. Goldbeck-Wood, J. Chem. Phys. 125, 154905 (2006).

    Article  Google Scholar 

  37. T. Xu, C. J. Hawker, and T. P. Russell, Macromolecules 36, 6178 (2003).

    Article  CAS  Google Scholar 

  38. S. H. Kim, M. J. Misner, L. Yang, et al., Macromolecules 39, 8473 (2006).

    Article  CAS  Google Scholar 

  39. J-Y. Wang, W. Chen, J. D. Sievert, and T. P. Russell, Langmuir 24, 3545 (2008).

    Article  CAS  Google Scholar 

  40. J. He, J.-Y. Wang, J. Xu, et al., Adv. Mater. (Weinheim, Fed. Repub. Ger.) 19, 4370 (2007).

    Article  CAS  Google Scholar 

  41. S. Yamomoto, J. Soc. Rheol. 32, 295 (2004).

    Article  Google Scholar 

  42. H. Morita, T. Ozawa, N. Kobayashi, et al., J. Soc. Rheol. 36, 93 (2008).

    Article  CAS  Google Scholar 

  43. M. Tsige and G. S. Grest, J. Phys.: Condens. Matter 17, 4119 (2005).

    Article  Google Scholar 

  44. M. Tsige, T. R. Mattsson, and G. S. Grest, Macromolecules 37, 9132 (2004).

    Article  CAS  Google Scholar 

  45. R. D. Groot, T. J. Madden, and D. J. Tildesley, J. Chem. Phys. 110, 9739 (1999).

    Article  CAS  Google Scholar 

  46. A. Yu. Grosberg, P. G. Khalatur, and A. R. Khokhlov, Macromol. Rapid Commun. 3, 709 (2003).

    Google Scholar 

  47. P. Espanõl and P. Warren, Europhys. Lett. 30, 191 (1995).

    Article  Google Scholar 

  48. R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).

    Article  CAS  Google Scholar 

  49. R. D. Groot and T. Madden, J. Chem. Phys. 108, 8713 (1998).

    Article  CAS  Google Scholar 

  50. M. Shibayama, T. Hashimoto, H. Hasegawa, and H. Kawai, Macromolecules 16, 1427 (1983).

    Article  CAS  Google Scholar 

  51. W. Huang, C. Luo, J. Zhang, and Y. Han, J. Chem. Phys. 126, 104901 (2007).

    Article  Google Scholar 

  52. P. Busch, D. Posselt, D.-M. Smilgies, et al., Macromolecules 36, 8717 (2003).

    Article  CAS  Google Scholar 

  53. Y. Tsori and D. Andelmana, Eur. Phys. J., E 5, 605 (2001).

    Article  CAS  Google Scholar 

  54. G. J. Kellogg, D. G. Walton, A. M. Mayes, et al., Phys. Rev. Lett. 76, 2503 (1996).

    Article  CAS  Google Scholar 

  55. M. S. Turner, Phys. Rev. Lett. 69, 1788 (1992).

    Article  CAS  Google Scholar 

  56. T. Okuzono, K. Ozawa, and M. Doi, Phys. Rev. Lett. 97, 136103 (2006).

    Article  Google Scholar 

  57. M. A. Horsch, Z. Zhang, Ch. R. Iacovella, and S. C. Glozter, J. Chem. Phys. 121, 11455 (2004).

    Article  CAS  Google Scholar 

  58. J. Tata, D. Scalarone, M. Lazzari, and O. Chiantore, Eur. Polym. J. 45, 2520 (2009).

    Article  CAS  Google Scholar 

  59. J. Bang, B. J. Kim, G. E. Stein, et al., Macromolecules 40, 7019 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Neratova.

Additional information

Original Russian Text © I.V. Neratova, A.S. Pavlov, P.G. Khalatur, 2010, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2010, Vol. 52, No. 9, pp. 1633–1644.

This work was supported by the Russian Foundation for Basic Research, project no. 10-03-00763-a.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Neratova, I.V., Pavlov, A.S. & Khalatur, P.G. Effect of a solvent on self-organization in nanofilms: Modeling by the dissipative particle dynamics method. Polym. Sci. Ser. A 52, 959–969 (2010). https://doi.org/10.1134/S0965545X10090129

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X10090129

Keywords

Navigation