Skip to main content
Log in

Nanoscale morphology in sulphonated poly(Ether ether ketone)-based ionomeric membranes: Mesoscale simulations

  • Modeling
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

The model of a proton-conducting membrane based on sulfonated aromatic poly(ether ether ketone) has been constructed in the context of the mesoscale-dynamics method. The structure of the polymer is represented as a linear adjusted sequence of polar and nonpolar chain units. The degree of sulfonation and water content in the system are the main parameters during calculations. The constructed model shows that microphase separation of hydrophilic and hydrophobic polymer chain units occurs even at small water contents. A spatial network of water domains that has walls made of polymer-matrix polar chain units is formed within the membrane volume. The estimation of the percolation threshold demonstrates that water domains form a penetrating system of channels at water contents as low as 5–9%. Analogous simulations have been performed for the well-studied Nafion-1100 membrane. Although the morphologies of hydrophilic channels in sulfonated aromatic poly(ether ether ketone) and Nafion differ substantially, their cross sections are close. The results make it possible to consider sulfonated aromatic poly (ether ether ketone) a possible alternative to Nafion during the development of proton-conducting membranes for new-generation fuel cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Carrette, K. A. Friedrich, and U. Stimming, Fuel Cells 1, 5 (2001).

    Article  CAS  Google Scholar 

  2. M. Winter and R. J. Brodd, Chem. Rev. 104, 4245 (2004).

    Article  CAS  Google Scholar 

  3. M. S. Wilson and S. Gottesfeld, J. Electrochem. Soc. 139, 28 (1992).

    Article  Google Scholar 

  4. M. S. Wilson and S. Gottesfeld, J. Appl. Electrochem. 22, 1 (1992).

    Article  CAS  Google Scholar 

  5. D. D. Morris and X. J. Sun, J. Appl. Polym. Sci. 50, 1445 (1993).

    Article  CAS  Google Scholar 

  6. K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535 (2004).

    Article  CAS  Google Scholar 

  7. Z. Chengji, L. Haidan, S. Ke, et al., J. Power Sources 162, 1003 (2006).

    Article  Google Scholar 

  8. P. Xing, G. P. Robertson, M. D. Guiver, et al., J. Membr. Sci. 229, 95 (2004).

    Article  CAS  Google Scholar 

  9. W. Han-Lang, M. M. Chen-Chi, L. Chia-Hsun, and C. Chih-Yuan, J. Polym. Sci., Part B: Polym. Phys. 44, 3128 (2006).

    Article  Google Scholar 

  10. W. Han-Lang, M. M. Chen-Chi, L. Chia-Hsun, et al., J. Membr. Sci. 280, 501 (2006).

    Article  Google Scholar 

  11. W. Han-Lang, M. M. Chen-Chi, H. C. Ma, et al., J. Polym. Sci., Part B: Polym. Phys. 44, 565 (2006).

    Article  Google Scholar 

  12. V. V. Lakshmi, V. Choudhary, and I. K. Varma, Macro-mol. Symp. 210, 21 (2004).

    Article  CAS  Google Scholar 

  13. N. Agmon, Chem. Phys. Lett. 244, 456 (1995).

    Article  CAS  Google Scholar 

  14. O. Markovitch and N. Agmon, J. Phys. Chem., A 111, 2253 (2007).

    Article  CAS  Google Scholar 

  15. W. Y. Hsu, J. R. Barley, and P. Meakin, Macromolecules 13, 198 (1980).

    Article  CAS  Google Scholar 

  16. K. A. Mauritz, C. J. Hora, and A. J. Hopfinger, Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.) 19, 324 (1978).

    CAS  Google Scholar 

  17. T. D. Gierke, G. E. Munn, and F. C. Wilson, J. Polym. Sci., Part A: Polym. Chem. 19, 1687 (1981).

    CAS  Google Scholar 

  18. M. Fujimura, T. Hashimoto, and H. Kawai, Macromolecules 15, 136 (1982).

    Article  CAS  Google Scholar 

  19. H. L. Yeager and A. J. Steck, J. Electrochem. Soc. 128, 1880 (1981).

    Article  CAS  Google Scholar 

  20. S. C. Yeo and A. Eisenberg, J. Appl. Polym. Sci. 21, 875 (1997).

    Article  Google Scholar 

  21. K. D. Kreuer, J. Membr. Sci. 185, 29 (2001).

    Article  CAS  Google Scholar 

  22. L. Rubatat, A. Rollet, G. Gebel, and O. Diat, Macromolecules 35, 4050 (2002).

    Article  CAS  Google Scholar 

  23. J. A. Elliott, S. Hanna, A. M. S. Elliott, and G. E. Cooley, Phys. Chem. Chem. Phys. 1, 4855 (1999).

    Article  CAS  Google Scholar 

  24. A. Vishnyakov and A. V. Neimark, J. Phys. Chem., B 104, 4471 (2000).

    Article  CAS  Google Scholar 

  25. S. S. Jang, V. Molinero, T. Cagin, and W. A. Goddard, J. Phys. Chem., B 108, 3149 (2004).

    Article  CAS  Google Scholar 

  26. S. S. Jang, V. Molinero, T. Cagin, and W. A. Goddard, Solid State Ionics 175, 805 (2004).

    Article  CAS  Google Scholar 

  27. S. S. Jang, M. Blanco, W. A. Goddard, et al., Macromolecules 36, 5331 (2003).

    Article  CAS  Google Scholar 

  28. M. K. Petersen, F. Wang, N. P. Blake, et al., J. Phys. Chem., B 109, 3727 (2005).

    Article  CAS  Google Scholar 

  29. S. J. Paddison and T. A. Zawodzinski, Solid State Ionics 113, 333 (1998).

    Article  Google Scholar 

  30. S. J. Paddison, L. R. Pratt, and T. A. Zawodzinski, J. New Mater. Electrochem. Syst. 2, 183 (1999).

    CAS  Google Scholar 

  31. S. J. Paddison, J. New Mater. Electrochem. Syst. 4, 197 (2001).

    CAS  Google Scholar 

  32. D. A. Mologin, P. G. Khalatur, and A. R. Kholhlov, Macromol. Theory Simul. 11, 587 (2002).

    Article  CAS  Google Scholar 

  33. P. G. Khalatur, S. K. Talitskikh, and A. R. Khokhlov, Macromol. Theory Simul. 11, 566 (2002).

    Article  CAS  Google Scholar 

  34. S. Yamamoto and S. A. Hyodo, Polym. J. (Tokyo) 35, 519 (2003).

    CAS  Google Scholar 

  35. J. G. E. M. Fraaije, B. A. C. VanVlimmeren, N. M. Maurits, et al., J. Chem. Phys. 106, 4260 (1997).

    Article  CAS  Google Scholar 

  36. J. T. Wescott, Y. Qia, L. Subramanian, and T. W. Capehart, J. Chem. Phys. 124, 134702 (2006).

    Article  Google Scholar 

  37. N. M. Maurits, B. A. C. Van Vlimmeren, and J. G. E. M. Fraaije, Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 56, 816 (1997).

    CAS  Google Scholar 

  38. N. M. Maurits, A. V. Zvelindovsky, G. J. A. Sevink, et al., J. Chem. Phys. 108, 9150 (1998).

    Article  CAS  Google Scholar 

  39. A. V. Zvelindovsky, G. J. A. Sevink, B. A. C. Van Vlimmeren, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 57, 4879 (1998).

    Google Scholar 

  40. J. J. Kreuger, P. P. Simon, and H. J. Ploehn, Macromolecules 35, 5630 (2002).

    Article  Google Scholar 

  41. M. Doi and S. F. Edwards, The Theory of Polymer Dynamics (Clarendon, Oxford, 1986; Mir, Moscow, 1998).

    Google Scholar 

  42. L. D. Landau and E. M. Lifshits, Statistical Physics (Nauka, Moscow, 1964; Pergamon, Oxford, 1980).

    Google Scholar 

  43. D. Chandler, Introduction to Modern Statistical Mechanics (Oxford Univ. Press, Oxford, 1987).

  44. W. H. Press, B. P. Flannery, S. A. Teukolky, and W. T. Vetterling, Numerical Recipes (Cambridge Univ. Press, Cambridge, 1987).

    Google Scholar 

  45. X. Jin, T. M. Bishop, and S. T. Ellis, Br. Polym. J. 17, 4 (1985).

    Article  CAS  Google Scholar 

  46. J. Bicerano, Prediction of Polymer Properties (Marcel Dekker, New York, 2002).

    Google Scholar 

  47. J. Roovers, J. D. Cooney, and P. M. Toporowski, Macromolecules 23, 1611 (1990).

    Article  CAS  Google Scholar 

  48. O. Herrmann-Schonherr, A. Schneller, A. M. Seifert, et al., Makromol. Chem. 193, 1955 (1992).

    Article  Google Scholar 

  49. J. H. Hildebrand and R. L. Scott, The Solubility of Non-Electrolytes (Reinhold, New York, 1949).

    Google Scholar 

  50. P. J. Flory, Discuss. Faraday Soc. 49, 7 (1970).

    Article  Google Scholar 

  51. A. A. Askadskii and V. I. Kondrashchenko, Computational Materials Science of Polymers (Nauchnyi Mir, Moscow, 1999).

    Google Scholar 

  52. H. Sun, Macromolecules 28, 701 (1995).

    Article  CAS  Google Scholar 

  53. P. V. Komarov, C. Yu-Tsung, C. Shih-Ming, et al., Macromolecules 40, 8104 (2007).

    Article  CAS  Google Scholar 

  54. Y. S. Chun, H. S. Kwon, W. N. Kim, and H. G. Yoon, J. Appl. Polym. Sci. 78, 2488 (2000).

    Article  CAS  Google Scholar 

  55. D.W. Van Krevelen, in Computational Modeling of Polymers, Ed. by J. Bicerano (Marcel Dekker, New York, 1992).

    Google Scholar 

  56. R. F. Feders, Polym. Eng. Sci. 14, 147 (1974).

    Article  Google Scholar 

  57. J. Brandrup, E. H. Immergut, and E. A. Grulke, Polymer Handbook (Wiley, New York, 2003).

    Google Scholar 

  58. P. Futerko and I.-M. Hsing, J. Electrochem. Soc. 146, 2049 (1999).

    Article  CAS  Google Scholar 

  59. B. E. Eichinger, D. R. Rigby, and M. H. Muir, Comput. Polym. Sci. 5, 147 (1995).

    CAS  Google Scholar 

  60. E. Spohr, P. Commer, and A. A. Kornyshev, J. Phys. Chem., B 106, 10560 (2002).

    Article  CAS  Google Scholar 

  61. M. W. Verbrugge, E. W. Schneider, R. S. Conell, and R. F. Hill, J. Electrochem. Soc. 139, 3421 (1992).

    Article  CAS  Google Scholar 

  62. R. Consiglioa, D. R. Backer, G. Paul, and H. E. Stanley, Physica A (Amsterdam) 319, 49 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. V. Komarov.

Additional information

This work was supported by the Russian Foundation for Basic Research (project no. 09-03-00671-a).

Original Russian Text © P.V. Komarov, I.N. Veselov, P.G. Khalatur, 2010, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2010, Vol. 52, No. 2, pp. 279–297.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komarov, P.V., Veselov, I.N. & Khalatur, P.G. Nanoscale morphology in sulphonated poly(Ether ether ketone)-based ionomeric membranes: Mesoscale simulations. Polym. Sci. Ser. A 52, 191–208 (2010). https://doi.org/10.1134/S0965545X10020136

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X10020136

Keywords

Navigation