Skip to main content
Log in

Local mobility and rheological characteristics of gels based on hydrophobically modified poly(acrylamides)

  • Networks and Gels
  • Published:
Polymer Science Series A Aims and scope Submit manuscript

Abstract

For hydrophobically modified poly(acryl amide), we analyze the effect of various parameters of the macromolecular structure (number and length of side hydrophobic groups, content of charged groups, type of bonding between side chains and the polymer backbone, and the degree of blocking of hydrophobic groups distributed along the chain) on the local mobility of physical network junctions and rheological characteristics of gels. We have found that the local mobility measured by the method of spin-probe EPR spectroscopy is either independent or it slightly depends on the above parameters. At the same time, these parameters exert a strong effect on the rheological characteristics of gels. This disagreement can be explained by the fact that local mobility of junctions is primarily controlled by the intermolecular interactions of hydrophobic groups and by the covalent bonding between these groups and a macromolecule. However, the rheological characteristics depend on the number of junctions, their dimensions, and other parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S. Evani and G. D. Rose, Polym. Mater. Sci. Eng. 57, 477 (1987).

    CAS  Google Scholar 

  2. J. C. Middleton, D. F. Cummins, and C. L. McCormic, in Water-Soluble Polymers: Synthesis, Solution Properties and Applications, Ed. by S. W. Shalaby, C. L. McCormick, and G. B. Buttler, ACS Symp. Ser. 467, 339 (1991).

  3. E. Volpert, J. Selb, and F. Candau, Polymer 39, 1025 (1998).

    Article  CAS  Google Scholar 

  4. Yu. A. Shashkina, Yu. D. Zaroslov, V. A. Smirnov, et al., Polymer 44, 2289 (2003).

    Article  CAS  Google Scholar 

  5. J. Bock, D. B. Siano, P. L. Valint, Jr., and S. J. Pace, in Polymers in Aqueous Media: Performance Through Association, Ed. by J. E. Glass, Adv. Chem. Ser. 223, 411 (1994).

  6. C. L. McCormick, T. Nonaka, and C. B. Johnson, Polymer 29, 731 (1988).

    Article  CAS  Google Scholar 

  7. L. Z. Rogovina and G. L. Slonimskii, Usp. Khim. 43, 1102 (1974).

    CAS  Google Scholar 

  8. A. A. Tager, Physical Chemistry of Polymers (Khimiya, Moscow, 1978) [in Russian].

    Google Scholar 

  9. L. Z. Rogovina, V. G. Vasil’ev, N. A. Churochkina, and T. A. Pryakhina, Polymer Science, Ser. A 46, 385 (2004) [Vysokomol. Soedin., Ser. A 46, 644 (2004)].

    Google Scholar 

  10. M. V. Motyakin, L. L. Yasina, N. A. Churochkina, et al., Polymer Science, Ser. B 48, 23 (2006) [Vysokomol. Soedin., Ser. B 48, 342 (2006)].

    Article  Google Scholar 

  11. A. Hill, F. Candau, and J. Selb, Prog. Colloid Polym. Sci. 84, 61 (1991).

    Article  CAS  Google Scholar 

  12. I. V. Blagodatskikh, O. V. Vasil’eva, T. A. Pryakhina, et al., Polymer Science, Ser. A 49, 763 (2007) [Vysokomol. Soedin., Ser. A 49, 1157 (2007)].

    Article  Google Scholar 

  13. A. Hill, F. Candau, and J. Selb, Macromolecules 26, 4521 (1993).

    Article  CAS  Google Scholar 

  14. Advanced ESR Methods in Polymer Research, Ed. by S. Schlick (Wiley, New York, 2006).

    Google Scholar 

  15. Spin Labeling. Theory and Applications, Ed. by L. J. Berliner (Academic, New York, 1976).

    Google Scholar 

  16. A. N. Kuznetsov, Spin Probe Method (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  17. A. M. Vasserman and A. L. Kovarskii, Spin Labels and Probes in Physical Chemistry of Polymers (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  18. B. G. Dzikovski and V. A. Livshits, Phys. Chem. Chem. Phys. 5, 5271 (2003).

    Article  CAS  Google Scholar 

  19. A. M. Wasserman, L. L. Yasina, I. I. Aliev, et al., Colloid Polym. Sci. 282, 402 (2004).

    Article  CAS  Google Scholar 

  20. D. E. Budel, S. Lee, S. Saxena, and J. H. Freed, J. Magn. Reson., Ser. A 120, 155 (1996).

    Article  Google Scholar 

  21. B. J. Gafney and H. M. McConnel, J. Magn. Reson. 16, 1 (1974).

    Google Scholar 

  22. A. M. Vasserman, I. I. Barashkova, T. V. Medvedeva, and V. F. Tarasov, Zh. Fiz. Khim. 71, 509 (1997).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Wasserman.

Additional information

Original Russian Text © A.M. Wasserman, L.Z. Rogovina, V.G.Vasil’ev, N.A. Churochkina, L.L. Yasina, M.V. Motyakin, I.I. Aliev, I.V. Blagodatskikh, O.V. Vasil’eva, 2009, published in Vysokomolekulyarnye Soedineniya, Ser. A, 2009, Vol. 51, No. 2, pp. 257–266.

This work was supported by the Russian Foundation for Basic Research, project no. 06-03-3217, and the State Support of Leading Scientific Schools (grant NSh-1468.2008.3).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wasserman, A.M., Rogovina, L.Z., Vasil’ev, V.G. et al. Local mobility and rheological characteristics of gels based on hydrophobically modified poly(acrylamides). Polym. Sci. Ser. A 51, 201–208 (2009). https://doi.org/10.1134/S0965545X09020096

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965545X09020096

Keywords

Navigation