Skip to main content
Log in

Seeds Promoted Interzeolite Transformation of USY and Fumed Silica to Long-Lifetime SSZ-13 Catalysts in Methanol-to-Olefins Reaction via a Grinding Route

  • Published:
Petroleum Chemistry Aims and scope Submit manuscript

Abstract

Two different seed crystals (K–CHA and nano-scaled SAPO-34) were used to promote the rapid interzeolite conversion of USY and fumed silica to pure SSZ-13 zeolite phase via a grinding route. The results show that both seeds can shorten the crystallization time of SSZ-13 zeolite to 24h, which is much shorter than the syntheses in the absence of seeds. The phase purity, morphology, textural parameters, elemental compositions and acid properties of two typical H–SSZ-13 samples with seeds were analyzed by XRD, SEM, N2 physisorption, EDS and NH3–TPD techniques in detail, and compared with the sample without seeds and a reference sample. The results indicate that the introduction of seeds can effectively modify the acid properties of H–SSZ-13, especially their medium strong acid sites. The methanol-to-olefins (MTO) reaction was employed as a probe to evaluate the catalytic stability of above four H–SSZ-13 catalysts. The results reveal that the catalytic lifetime of the two catalysts using seeds is much longer than that of the one without seeds and the reference sample H–SSZ-13–RS. It was speculated that the appropriate concentration of medium strong acid sites may play a pivotal role in prolonging their catalytic lifetime. Here our findings may throw light on the rational design of long-lifetime H-SSZ-13 catalysts in the MTO reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Auerbach, S.M., Carrado, K.A., and Dutta, P. K., Handbook of Zeolite Science and Technology, CRC Press, 2003.

  2. Cejka, J., van Bekkum, H., Corma, A., and Schüeth, F., Introduction to Zeolite Science and Practice; in Studies in Surface Science and Catalysis, 2007, vol. 168, Elsevier.

  3. Xu, R., Pang, W., Yu, J., Huo, Q., and Chen, J., Chemistry of Zeolites and Related Porous Materials: Synthesis and Structure, John Wiley & Sons, 2009. ISBN: 978-0-470-82233-3

  4. Corma, A., Chem .Rev., 1997, vol. 97, no. 6, pp. 2373–2420. https://doi.org/10.1021/cr960406n

    Article  CAS  PubMed  Google Scholar 

  5. Li, Y., Li, L., and Yu, J., Chem., 2017, vol. 3, no. 6, pp. 928–949. https://doi.org/10.1016/j.chempr.2017.10.009

    Article  CAS  Google Scholar 

  6. Davis, M.E., Chem. Mater., 2014, vol. 26, no. 1, pp. 239–245. https://doi.org/10.1021/cm401914u

    Article  CAS  Google Scholar 

  7. Kumar, M., Luo, H., Román-Leshkov, Y., and Rimer, J.D., J. Am. Chem. Soc., 2015, vol. 137, no. 40, pp. 13007–13017. https://doi.org/10.1021/jacs.5b07477

    Article  CAS  PubMed  Google Scholar 

  8. Dusselier, M.and Davis, M.E., Chem. Rev., 2018, vol. 118, no. 11, pp. 5265–5329. https://doi.org/10.1021/acs.chemrev.7b00738

    Article  CAS  PubMed  Google Scholar 

  9. Bleken, F., Bjorgen, M., Palumbo, L., Bordiga, S., Svelle, S., Lillerud, K.-P., and Olsbye, U., Top. Catal., 2009, vol. 52, no. 3, pp. 218–228. https://doi.org/10.1007/s11244-008-9158-0

    Article  CAS  Google Scholar 

  10. Xu, S., Zheng, A., Wei, Y., Chen, J., Li, J., Chu, Y., Zhang, M., Wang, Q., Zhou, Y., Wang, J., Deng, F., and Liu, Z., Angew. Chem. Int. Ed., 2013, vol. 52, no. 44, pp. 11564–1568. https://doi.org/10.1002/anie.201303586

    Article  CAS  Google Scholar 

  11. Prodinger, S., Derewinski, M.A., Wang, Y., Washton, N.M., Walter, E.D., Szanyi, J., Gao, F., Wang, Y., and Peden, C.H.F., Appl. Catal. B: Environ., 2017, vol. 201, pp. 461–469. https://doi.org/10.1016/j.apcatb.2016.08.053

    Article  CAS  Google Scholar 

  12. Zones, S.I., Patent US 4 544 538, 1985.

  13. Yu, H.-F., Zhang, G.-P., Han, L.-N., Chang, L.-P., Bao, W.-R., and Wang, J.-C., Acta Phys.-Chim. Sin., 2015, vol. 31, no. 11, pp. 2165–2173. https://doi.org/10.3866/pku.whxb201509184

    Article  CAS  Google Scholar 

  14. Zones, S.I., J. Chem. Soc., Faraday Trans., 1991, vol. 87, no. 22, pp. 3709–3716. https://doi.org/10.1039/ft9918703709

  15. Zones, S.I., J. Chem. Soc., Faraday Trans., 1990, vol. 86, no. 20, pp. 3467–3472. https://doi.org/10.1039/ft9908603467

  16. Takata, T., Tsunoji, N., Takamitsu, Y., Sadakane, M., and Sano, T., Microporous Mesoporous Mater., 2016, vol. 225, pp. 524–533. https://doi.org/10.1016/j.micromeso.2016.01.045

    Article  CAS  Google Scholar 

  17. Khan, N.A., Yoo, D.K., Bhadra, B.N., Jun, J.W., Kim, T.-W., Kim, C.-U., and Jhung, S.H., Chem. Eng. J., 2019, vol. 377, p. 119546. https://doi.org/10.1016/j.cej.2018.07.148

    Article  CAS  Google Scholar 

  18. Ren, L., Wu, Q., Yang, C., Zhu, L., Li, C., Zhang, P., Zhang, H., Meng, X., and Xiao, F.-S., J. Am. Chem. Soc., 2012, vol. 134, no. 37, pp. 15173–15176. https://doi.org/10.1021/ja3044954

    Article  CAS  PubMed  Google Scholar 

  19. Jin, Y., Sun, Q., Qi, G., Yang, C., Xu, J., Chen, F., Meng, X., Deng, F., and Xiao, F.-S., Angew. Chem.-Int. Ed., 2013, vol. 52, no. 35, pp. 9172–9175. https://doi.org/10.1002/anie.201302672

    Article  CAS  Google Scholar 

  20. Wu, Q., Liu, X., Zhu, L., Ding, L., Gao, P., Wang, X., Pan, S., Bian, C., Meng, X., Xu, J., Deng, F., Maurer, S., Müller, U., and Xiao, F.-S., J. Am. Chem. Soc., 2015, vol. 137, no. 3, pp. 1052–1055. https://doi.org/10.1021/ja5124013

    Article  CAS  PubMed  Google Scholar 

  21. Wu, Q., Meng, X., Gao, X., and Xiao, F.-S., Acc. Chem.Res., 2018, vol. 51, no. 6, pp. 1396–1403. https://doi.org/10.1021/acs.accounts.8b00057

    Article  CAS  PubMed  Google Scholar 

  22. Han, Z., Zhang, F., and Zhao, X., Microporous Mesoporous Mater., 2019, vol. 290, p. 109679. https://doi.org/10.1016/j.micromeso.2019.109679

    Article  CAS  Google Scholar 

  23. Zhao, X., Zhao, J., Wen, J., Li, A., Li, G., and Wang, X., Microporous Mesoporous Mater., 2015, vol. 213, pp. 192–196. https://doi.org/10.1016/j.micromeso.2015.03.031

    Article  CAS  Google Scholar 

  24. Wang, X., Wu, Q., Chen, C., Pan, S., Zhang, W., Meng, X., Maurer, S., Feyen, M., Mueller, U., and Xiao, F.-S., Chem. Commun., 2015, vol. 51, no. 95, pp. 16920–16923. https://doi.org/10.1039/c5cc05980a

    Article  CAS  Google Scholar 

  25. Pashkova, V., Mlekodaj, K., Klein, P., Brabec, L., Zouzelka, R., Rathousky, J., Tokarova, V., and Dedecek, J., Chem. Eur. J., 2019, vol. 25, no. 52, pp. 12068–12073. https://doi.org/10.1002/chem.201902107

    Article  CAS  PubMed  Google Scholar 

  26. Miyagawa, S., Miyake, K., Hirota, Y., Nishiyama, N., Miyamoto, M., Oumi, Y., and Tanaka, S., Microporous Mesoporous Mater., 2019, vol. 278, pp. 219–224. https://doi.org/10.1016/j.micromeso.2018.11.037

    Article  CAS  Google Scholar 

  27. Ye, Z., Zhang, H., Zhang, Y., and Tang, Y., Front. Chem. Sci. Eng., 2020, vol. 14, no. 2, pp. 143–158. https://doi.org/10.1007/s11705-019-1852-x

    Article  CAS  Google Scholar 

  28. Iyoki, K., Itabashi, K., and Okubo, T., Microporous Mesoporous Mater., 2014, vol. 189, pp. 22–30. https://doi.org/10.1016/j.micromeso.2013.08.008

    Article  CAS  Google Scholar 

  29. Zhang, D., Lu, H., Su, N., Li, G., Ji, D., and Zhao, X., J. Inorg. Mater., 2021, vol. 36, no. 1, pp. 101–106. https://doi.org/10.15541/jim20200059

    Article  Google Scholar 

  30. Lu, H., Duan, W., and Zhao, X., React. Kinet. Mech. Cat., 2019, vol. 128, no. 2, pp. 1029–1042. https://doi.org/10.1007/s11144-019-01655-0

    Article  CAS  Google Scholar 

  31. Xiong, X., Yuan, D., Wu, Q., Chen, F., Meng, X., Lv, R., Dai, D., Maurer, S., McGuire, R., Feyen, M., Mueller, U., Zhang, W., Yokoi, T., Bao, X., Gies, H., Marler, B., De Vos, D.E., Kolb, U., Moini, A., and Xiao, F.-S., J. Mater. Chem. A, 2017, vol. 5, no. 19, pp. 9076–9080. https://doi.org/10.1039/c7ta01749a

    Article  CAS  Google Scholar 

  32. Razavian, M., Halladj, R., and Askari, S., Rev. Adv. Mater. Sci., 2011, vol. 29, no. 1, pp. 83–99.

    CAS  Google Scholar 

  33. Najafi, N., Askari, S., and Halladj, R., Powder Technol., 2014, vol. 254, pp. 324–330. https://doi.org/10.1016/j.powtec.2014.01.037

    Article  CAS  Google Scholar 

  34. Nedyalkova, R., Montreuil, C., Lambert, C., and Olsson, L., Top. Catal., 2013, vol. 56, nos. 9–10, pp. 550–557. https://doi.org/10.1007/s11244-013-0015-4

    Article  CAS  Google Scholar 

  35. Mintova, S., Verified Syntheses of Zeolitic Materials, Synthesis Commission of the International Zeolite Association, 2016.

  36. Wang, Y., Chen, J., Lei, X., Ren, Y., and Wu, J., Adv. Powder Technol., 2018, vol. 29, no. 5, pp. 1112–1118. https://doi.org/10.1016/j.apt.2018.02.001

    Article  CAS  Google Scholar 

  37. Sarker, M., Khan, N.A., Yoo, D.K., Bhadra, B.N., Jun, J.W., Kim, T.-W., Kim, C.-U., and Jhung, S.H., Chem. Eng. J., 2019, vol. 377, p. 120116. https://doi.org/10.1016/j.cej.2018.10.053

    Article  CAS  Google Scholar 

  38. Tang, L., Haw, K.-G., Zhang, Y., Fang, Q., Qiu, S., and Valtchev, V., Microporous Mesoporous Mater., 2019, vol. 280, pp. 306–314. https://doi.org/10.1016/j.micromeso.2019.02.021

    Article  CAS  Google Scholar 

  39. Bing, L., Tian, A., Wang, F., Yi, K., Sun, X.and Wang, G., Chem. Eur. J., 2018, vol. 24, no. 29, pp. 7428–7433. https://doi.org/10.1002/chem.201705784

    Article  CAS  PubMed  Google Scholar 

  40. Li, Y., Zhang, Y., Lan, A., Bian, H., Liu, R., Li, X., Han, P., and Dou, T., Microporous Mesoporous Mater., 2019, vol. 279, pp. 1–9. https://doi.org/10.1016/j.micromeso.2018.11.038

    Article  CAS  Google Scholar 

  41. Li, Y., Wang, Y., Zhang, Y., Liu, R., Li, X., and Dou, T., China Pet. Process. Petrochem. Technol., 2017, vol. 19, no. 3, pp. 68–76.

    CAS  Google Scholar 

  42. Xu, Z., Li, J., Huang, Y., Ma, H., Qian, W., Zhang, H., and Ying, W., Catal. Sci. Technol., 2019, vol. 9, no. 11, pp. 2888–2897. https://doi.org/10.1039/c9cy00412b

    Article  CAS  Google Scholar 

  43. Wu, L., Degirmenci, V., Magusin, P. C.M.M., Szyja, B.M., and Hensen, E.J.M., Chem. Commun., 2012, vol. 48, no. 76, pp. 9492–9494. https://doi.org/10.1039/c2cc33994c

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant no. 21666019, 22168022) and Youth Natural Science Foundation of Gansu Province (Grant no. 20JR10RA189).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xuefeng Long or Xinhong Zhao.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hao, Z., Niu, L., Long, X. et al. Seeds Promoted Interzeolite Transformation of USY and Fumed Silica to Long-Lifetime SSZ-13 Catalysts in Methanol-to-Olefins Reaction via a Grinding Route. Pet. Chem. 62, 962–971 (2022). https://doi.org/10.1134/S0965544122070246

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965544122070246

Keywords:

Navigation