Skip to main content
Log in

Computation of Asymptotic Spectral Distributions for Sequences of Grid Operators

  • GENERAL NUMERICAL METHODS
  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The asymptotic spectral properties of matrices of grid operators on polygonal domains in the plane are studied in the case of refining triangular grids. Methods available for analyzing spectral distributions are largely based on tool of the theory of generalized locally Toeplitz sequences (GLT theory). In this paper, we show that the matrices of grid operators on nonrectangular domains do not form GLT sequences. A method for calculating spectral distributions in such cases is proposed. Generalizations of GLT sequences are introduced, and preconditioner based on them are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. F. Avram, “On bilinear forms in Gaussian random variables and Toeplitz matrices,” Probab. Theory Relat. Fields 79 (1), 37–45 (1988).

    Article  MathSciNet  Google Scholar 

  2. U. Grenander and G. Szegö, Toeplitz Forms and Their Applications (Univ. of California Press, Berkeley, 1985).

    MATH  Google Scholar 

  3. S. V. Parter, “On the distribution of the singular values of Toeplitz matrices,” Linear Algebra Appl. 80, 115–130 (1986).

    Article  MathSciNet  Google Scholar 

  4. S. Serra-Capizzano, “Generalized locally Toeplitz sequences: Spectral analysis and applications to discretized partial differential equations,” Linear Algebra Appl. 366, 371–402 (2003).

    Article  MathSciNet  Google Scholar 

  5. E. Tyrtyshnikov and N. Zamarashkin, “Spectra of multilevel Toeplitz matrices: Advanced theory via simple matrix relationships,” Linear Algebra Appl. 270 (1), 15–27 (1998).

    Article  MathSciNet  Google Scholar 

  6. E. E. Tyrtyshnikov, “A unifying approach to some old and new theorems on distribution and clustering,” Linear Algebra Appl. 232, 1–43 (1996).

    Article  MathSciNet  Google Scholar 

  7. M. Barrera, A. Böttcher, S. M. Grudsky, and E. A. Maximenko “Eigenvalues of even very nice Toeplitz matrices can be unexpectedly erratic,” in The Diversity and Beauty of Applied Operator Theory (Springer, Berlin, 2018), pp. 51–77.

    Google Scholar 

  8. J. Bogoya, A. Böttcher, and S. Grudsky, “Asymptotics of individual eigenvalues of a class of large Hessenberg Toeplitz matrices,” in Recent Progress in Operator Theory and Its Applications (Springer, Berlin, 2012), pp. 77–95.

    Google Scholar 

  9. J. Bogoya, S. Grudsky, and E. Maximenko, “Eigenvalues of Hermitian Toeplitz matrices generated by simple-loop symbols with relaxed smoothness,” in Large Truncated Toeplitz Matrices, Toeplitz Operators, and Related Topics (Springer, Berlin, 2017), pp. 179–212.

    MATH  Google Scholar 

  10. J. M. Bogoya, A. Böttcher, S. M. Grudsky, and E. A. Maximenko, “Eigenvectors of Hermitian Toeplitz matrices with smooth simple-loop symbols,” Linear Algebra Appl. 493, 606–637 (2016).

    Article  MathSciNet  Google Scholar 

  11. C. Garoni, “Topological foundations of an asymptotic approximation theory for sequences of matrices with increasing size,” Linear Algebra Appl. 513, 324–341 (2017).

    Article  MathSciNet  Google Scholar 

  12. S. Serra-Capizzano, “Distribution results on the algebra generated by Toeplitz sequences: A finite-dimensional approach,” Linear Algebra Appl. 328 (1), 121–130 (2001).

    Article  MathSciNet  Google Scholar 

  13. C. Garoni and S. Serra-Capizzano, Generalized Locally Toeplitz Sequences: Theory and Applications (Springer, Cham, 2017).

    Book  Google Scholar 

  14. C. Garoni and S. Serra-Capizzano, “The theory of generalized locally Toeplitz sequences: A review, an extension, and a few representative applications,” Operator Theory: Adv. Appl. 259, 353–394 (2017).

    MathSciNet  MATH  Google Scholar 

  15. S. Serra-Capizzano, “The GLT class as a generalized Fourier analysis and applications,” Linear Algebra Appl. 419 (1), 180–233 (2006).

    Article  MathSciNet  Google Scholar 

  16. J. A. Cottrell, T. J. Hughes, and Y. Bazilevs, Isogeometric Analysis: Toward Integration of CAD and FEA (Wiley, New York, 2009).

    Book  Google Scholar 

  17. T. J. Hughes, J. A. Cottrell, and Y. Bazilevs, “Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement,” Comput. Methods Appl. Mech. Eng. 194, 4135–4195 (2005).

    Article  MathSciNet  Google Scholar 

  18. T. F. Chan, “An optimal circulant preconditioner for Toeplitz systems,” SIAM J. Sci. Stat. Comput. 9 (4), 766–771 (1988).

    Article  MathSciNet  Google Scholar 

  19. T. F. Chan and J. A. Olkin, “Circulant preconditioners for Toeplitz-block matrices,” Numer. Algorithms 6 (1), 89–101 (1994).

    Article  MathSciNet  Google Scholar 

  20. E. E. Tyrtyshnikov, “Optimal and superoptimal circulant preconditioners,” SIAM J. Matrix Anal. Appl. 13 (2), 459–473 (1992).

    Article  MathSciNet  Google Scholar 

  21. S. Serra-Capizzano and E. Tyrtyshnikov, “Any circulant-like preconditioner for multilevel matrices is not superlinear,” SIAM J. Matrix Anal. Appl. 21 (2), 431–439 (2000).

    Article  MathSciNet  Google Scholar 

  22. E. Tyrtyshnikov, “Circulant preconditioners with unbounded inverses,” Linear Algebra Appl. 216, 1–23 (1995).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. V. Morozov, S. Serra-Capizzano or E. E. Tyrtyshnikov.

Additional information

Translated by I. Ruzanova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morozov, S.V., Serra-Capizzano, S. & Tyrtyshnikov, E.E. Computation of Asymptotic Spectral Distributions for Sequences of Grid Operators. Comput. Math. and Math. Phys. 60, 1761–1777 (2020). https://doi.org/10.1134/S0965542520110093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542520110093

Keywords:

Navigation