Skip to main content
Log in

Regularized shallow water equations for numerical simulation of flows with a moving shoreline

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

A numerical algorithm for simulating free-surface flows based on regularized shallow water equations is adapted to flows involving moving dry-bed areas. Well-balanced versions of the algorithm are constructed. Test computations of flows with dry-bed areas in the cases of water runup onto a plane beach and a constant-slope beach are presented. An example of tsunami simulation is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. J. Stoker, Water Waves (Wiley, New York, 1957; Inostrannaya Literatura, Moscow, 1959).

    MATH  Google Scholar 

  2. A. G. Kulikovskii, N. V. Pogorelov, and A. Yu. Semenov, Mathematical Aspects of Numerical Solution of Hyperbolic Systems (Fizmatlit, Moscow, 2001; Chapman and Hall/CRC, London, 2001).

    MATH  Google Scholar 

  3. B. W. Levin and M. A. Nosov, Physics of Tsunamis (Springer, Berlin, 2008).

    Google Scholar 

  4. T. G. Elizarova and O. V. Bulatov, “Regularized shallow water equations and a new method of simulation of the open channel flows,” Int. J. Comput. Fluids. 46, 206–211 2011.

    Article  MathSciNet  MATH  Google Scholar 

  5. O. V. Bulatov and T. G. Elizarova, “Regularized shallow water equations and an efficient method for numerical simulation of shallow water flows,” Comput. Math. Math. Phys. 51 (1), 160–173 2011.

    Article  MathSciNet  MATH  Google Scholar 

  6. T. G. Elizarova, Quasi-Gas Dynamic Equations (Nauchnyi Mir, Moscow, 2007; Springer-Verlag, Berlin, 2009).

    Book  MATH  Google Scholar 

  7. Yu. V. Sheretov, Continuum Dynamics under Spatiotemporal Averaging (NITs Regulyarnaya i Khaoticheskaya Dinamika, Moscow, 2009).

    Google Scholar 

  8. T. G. Elizarova, A. A. Zlotnik, and O. V. Nikitina, Preprint Nos. 33, 36, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 2011).

    Google Scholar 

  9. T. G. Elizarova, M. A. Istomina, and N. K. Shelkovnikov, “Numerical simulation of solitary wave generation in a wind-water circular tunnel,” Math. Models Comput. Simul. 4 (6), 552–559 2012.

    Article  MATH  Google Scholar 

  10. O. V. Bulatov, “Analytical and numerical Riemann solutions of the Saint Venant equations for forward- and backward-facing step flows,” Comput. Math. Math. Phys. 54 (1), 158–171 2014.

    Article  MathSciNet  MATH  Google Scholar 

  11. T. G. Elizarova and D. A. Saburin, “Numerical modeling of liquid fluctuations in fuel tanks,” Math. Models Comput. Simul. 5 (5), 470–478 2013.

    Article  Google Scholar 

  12. T. G. Elizarova and D. A. Saburin, “The numerical simulation of Faraday waves on the basis of hydrodynamic equations in the shallow-water approximation,” Moscow Univ. Phys. Bull. 70 (1), 1–6 2015.

    Article  Google Scholar 

  13. A. A. Zlotnik, “On construction of quasi-gasdynamic systems of equations and the barotropic system with the potential body force,” Mat. Model. 24 (4), 65–79 2012.

    MathSciNet  MATH  Google Scholar 

  14. A. A. Zlotnik, “Energy equalities and estimates for barotropic quasi-gasdynamic and quasi-hydrodynamic systems of equations,” Comput. Math. Math. Phys. 50 (2), 310–321 2010.

    Article  MathSciNet  MATH  Google Scholar 

  15. A. A. Zlotnik and B. N. Chetverushkin, “Parabolicity of the quasi-gasdynamic system of equations, its hyperbolic second-order modification, and the stability of small perturbations for them,” Comput. Math. Math. Phys. 48 (3), 445–472 2008.

    Article  MathSciNet  MATH  Google Scholar 

  16. A. A. Sukhomozgii and Yu. V. Sheretov, “Uniqueness of the solution of regularized Saint Venant equations in the linear approximation,” Vestn. Tver. Gos. Univ., Ser. Prikl. Mat., No. 24, 5–7 2012.

    Google Scholar 

  17. A. A. Sukhomozgii and Yu. V. Sheretov, “Testing a new algorithm for computing one-dimensional unsteady free surface flows,” Vestn. Tver. Gos. Univ., Ser. Prikl. Mat., No. 27, 47–64 2012.

    Google Scholar 

  18. T. G. Elizarova and O. V. Bulatov, Preprint No. 21, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 2014).

    Google Scholar 

  19. T. G. Elizarova and M. A. Istomina, Preprint No. 65, IPM RAN (Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, 2014).

    Google Scholar 

  20. R. J. LeVeque, “Balancing source terms and flux gradients in high-resolution Godunov methods: The quasisteady wave propagation algorithm,” J. Comput. Phys. 146 (1), 346–365 1998.

    Article  MathSciNet  MATH  Google Scholar 

  21. Y. Huang, N. Zhang, and Y. Pei, “Well-balanced finite volume scheme for shallow water flooding and drying over arbitrary topography,” Eng. Appl. Comput. Fluid Mech. 7 (1), 40–54 2013.

    Google Scholar 

  22. A. A. Zlotnik, “On conservative spatial discretizations of the barotropic quasi-gasdynamic system of equations with a potential body force,” Comput. Math. Math. Phys. 56 (2), 303–319 2016.

    Article  Google Scholar 

  23. M. Ricchiuto, R. Abgrall, and H. Deconinck, “Application of conservative residual distribution schemes to the solution of the shallow water equations on unstructured meshes,” J. Comput. Phys. 222, 287–331 2007.

    Article  MathSciNet  MATH  Google Scholar 

  24. A. Birman and J. Falcovitz, “Application of the GRP scheme to open channel flow equations,” J. Comput. Phys. 222, 131–154 2007.

    Article  MathSciNet  MATH  Google Scholar 

  25. A. S. Petrosyan, Additional Topics in Hydrodynamics of Heavy Fluid with Free Surface, Ser. Mechanics, Control, Informatics (Inst. Kosm. Issled. Ross. Akad. Nauk, Moscow, 2010) [in Russian].

    Google Scholar 

  26. Xu Kun, “A well-balanced gas-kinetic scheme for the shallow-water equations with source terms,” J. Comput. Phys. 178, 533–562 2002

    Article  MathSciNet  MATH  Google Scholar 

  27. F. Marche, PhD Thesis (Universite de Bordeau 1, 2005); wwwmathu-bordeau1fr/marche/THESE/marchepdf.

    Google Scholar 

  28. G. F. Carrier and H. P. Greenspan, “Water waves of finite amplitude on a sloping beach,” J. Fluid Mech. 4, 97–109 1958.

    Article  MathSciNet  MATH  Google Scholar 

  29. G. F. Carrier, T. T. Wu, and H. Yeh, “Tsunami run-up and draw-down on a plane beach,” J. Fluid Mech. 475, 79–99 2003.

    Article  MathSciNet  MATH  Google Scholar 

  30. Benchmark Problem 1: Tsunami Runup onto a plane beach; http://isecnacseorg/workshop/2004_cornell/ bmark1html.

  31. NOAA Center for Tsunami Research. Tsunami Runup onto a Complex Three-dimensional Beach. Monai Valley; http://nctrpmelnoaagov/benchmark/Laboratory/Laboratory_MonaiValley/indexhtml

  32. M. Ricchiuto, “An explicit residual based approach for shallow water flows,” J. Comput. Phys. 280, 306–344 2015.

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Elizarova.

Additional information

Original Russian Text © O.V. Bulatov, T.G. Elizarova, 2016, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2016, Vol. 56, No. 4, pp. 665–684.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bulatov, O.V., Elizarova, T.G. Regularized shallow water equations for numerical simulation of flows with a moving shoreline. Comput. Math. and Math. Phys. 56, 661–679 (2016). https://doi.org/10.1134/S0965542516040047

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542516040047

Keywords

Navigation