Skip to main content
Log in

Statistical mechanics of vortex hydrodynamic structures

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

The existing approaches to analyzing the dynamics of coherent vortex structures are considered from the viewpoint of the calculus of variations for Poisson systems. For turbulent hydrodynamic flows with large-scale vortices, a simulation technique in the form of statistical mechanics of the Euler equation in a “coarse-grained” representation is substantiated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Reynolds, “On the dynamical theory of incompressible viscous fluids and the determination of the criterion,” Philos. Trans. R. Soc. London Ser. A 186, 123 (1895).

    Article  MATH  Google Scholar 

  2. O. M. Belotserkovskii, “Computational experiment: Direct numerical simulation of complex gas-dynamics flow on the basis of Euler, Navier–Stokes, and Boltzmann equations,” Karman Lectures, Numerical Methods in Fluid Dynamics, Ed. by H. J. Wirz and J. J. Smolderen (Hemisphere, Washington, 1978), pp. 339–387.

    Google Scholar 

  3. O. M. Belotserkovskii, “Direct numerical modeling of free induced turbulence,” USSR Comput. Math. Math. Phys. 25 (6), 166–183 (1985).

    Article  Google Scholar 

  4. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, Turbulence: New Approaches (Nauka, Moscow, 2002) [in Russian].

    Google Scholar 

  5. O. M. Belotserkovskii, A. M. Oparin, and V. M. Chechetkin, “Physical processes underlying the development of shear turbulence,” J. Exp. Theor. Phys. 99, 504–509 (2004).

    Article  Google Scholar 

  6. S. J. Kline, W. D. Reynolds, F. A. Schraub, and P. W. Runstadler, “The structure of turbulent boundary layers,” J. Fluid Mech. 30, 741–773 (1967).

    Article  Google Scholar 

  7. S. C. Crow and F. H. Champagne, “Orderly structure in jet turbulence,” J. Fluid Mech. 48, 547–591 (1971).

    Article  Google Scholar 

  8. G. L. Brown and A. Roshko, “On density effects and large structure in turbulent mixing layers,” J. Fluid Mech. 64, 775–816 (1974).

    Article  Google Scholar 

  9. A. E. Perry, T. T. Lim, M. S. Chong, and E. W. Tex, “The fabric of turbulence,” AIAA Paper 80, 1358 (1980).

    Google Scholar 

  10. M. Lesieur, Turbulence in Fluids (Kluwer Academic, Dordrecht, 1997).

    Book  MATH  Google Scholar 

  11. A. K. M. Hussain, “Role of coherent structures in turbulent shear flows,” Proc. Indian Acad. Sci. (Eng. Sci.) 4, Part 2, 129–175 (1981).

    Google Scholar 

  12. H. Tennekes and J. L. Lumley, A First Course in Turbulence (MIT, Cambridge, Mass., 1972).

    Google Scholar 

  13. B. W. van de Fliert and E. van Groesen, “On variational principles for coherent vortex structures,” Appl. Sci. Res. 51, 399–403 (1993).

    Article  MATH  Google Scholar 

  14. E. R. Fledderus and E. van Groesen, “Deformation of coherent structures,” Rep. Prog. Phys. 59, 511–600 (1996).

    Article  Google Scholar 

  15. B. W. van de Fliert and E. van Groesen, “Monopolar vortices as relative equilibria and their dissipative decay,” Nonlinearity 5, 473–495 (1992).

    Article  MATH  MathSciNet  Google Scholar 

  16. E. van Groesen, “Time-asymptotics and the self-organization hypothesis for 2D Navier–Stokes equations,” Phys. A 148, 312–330 (1988).

    Article  MATH  Google Scholar 

  17. A. K. M. F. Hussain and W. C. Reynolds, “The mechanics of an organized wave in turbulent shear flow,” J. Fluid Mech. 41, 241–258 (1970).

    Article  Google Scholar 

  18. A. K. M. F. Hussain, “Coherent structures and studies of perturbed and unperturbed jets,” The Role of Coherent Structures in Modeling Turbulence and Mixing: Proceedings of the International Conference, Madrid, Spain, June 25–27, 1980, Ed. by J. Jimenez (Springer-Verlag, Berlin, 1981), pp. 252–291.

    Chapter  Google Scholar 

  19. L. Onsager, “Statistical hydrodynamics,” Nuovo Cimento Suppl. 6, 279–289 (1949).

    Article  MathSciNet  Google Scholar 

  20. F. Bouchet and A. Venaille, “Statistical Mechanics of two-dimensional and geophysical flows,” Phys. Rep. 515, 227–295 (2012).

    Article  MathSciNet  Google Scholar 

  21. Y. B. Pointin and T. S. Lundgren, “Statistical mechanics of two-dimensional vortices in a bounded container,” Phys. Fluids 19 (10), 1459–1470 (1976).

    Article  MATH  Google Scholar 

  22. C. Marchioro and M. Pulvirenti, Mathematical Theory of Incompressible Fluids (Springer-Verlag, New York, 1994).

    Book  MATH  Google Scholar 

  23. M. Sano, “Kinetic theory of point vortex systems from the Bogoliubov–Born–Green–Kirkwood–Yvon hierarchy,” Phys. Rev. E 76, 046312–046321 (2007).

    Article  MathSciNet  Google Scholar 

  24. P. H. Chavanis and M. Lemou, “Kinetic Theory of point vortices in two dimensions: Analytical results and numerical simulations,” Eur. Phys. J. B 59, 217–247 (2007).

    Article  MATH  MathSciNet  Google Scholar 

  25. P. J. Olver, “A nonlinear Hamiltonian structure for the Euler equations,” J. Math. Anal. Appl. 89, 233–250 (1982).

    Article  MATH  MathSciNet  Google Scholar 

  26. P. J. Morrison, “Hamiltonian description of the ideal fluid,” Rev. Mod. Phys. 70, 467–521 (1998).

    Article  MATH  Google Scholar 

  27. L. C. Young, “Generalized curves and the existence of an attained absolute minimum in the calculus of variations,” C. R. Sci. Lett. Varsovie. Classe III 30, 212–234 (1937).

    MATH  Google Scholar 

  28. E. J. McShane, “Generalized curves,” Duke Math. J. 6, 513–536 (1940).

    Article  MathSciNet  Google Scholar 

  29. F. Bouchet and M. Corvellec, “Invariant measures of the 2D Euler and Vlasov equations,” J. Stat. Mech.: Theory Exp. 8, 08021–08065 (2010).

    Article  Google Scholar 

  30. P. H. Chavanis, J. Sommeria, and R. Robert, “Statistical mechanics of two-dimensional vortices and collisionless stellar systems,” Astrophys. J. 471, 385 (1996).

    Article  Google Scholar 

  31. J. Miller, P. Weichman, and M. C. Cross, “Statistical mechanics, Euler’s equation, and Jupiter’s red spot,” Phys. Rev. A 45 (4), 2328–2359 (1992).

    Article  Google Scholar 

  32. D. Lynden-Bell, “Statistical mechanics of violent relaxation in stellar systems,” Mon. Not. R. Astron. Soc. 136, 101–121 (1967).

    Article  Google Scholar 

  33. R. Robert and J. Sommeria, “Statistical equilibrium states for two-dimensional flows,” J. Fluid Mech. 229, 291–310 (1991).

    Article  MATH  MathSciNet  Google Scholar 

  34. J. Miller, “Statistical mechanics of Euler equations in two dimensions,” Phys. Rev. Lett. 65, 2137–2140 (1990).

    Article  MATH  MathSciNet  Google Scholar 

  35. D. Montgomery and G. Joyce, “Statistical mechanics of ‘negative temperature’ states,” Phys. Fluids 17, 1139–1145 (1974).

    Article  MathSciNet  Google Scholar 

  36. R. S. Ellis, K. Haven, and B. Turkington, “Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows,” Nonlinearity 15, 239–255 (2002).

    Article  MATH  MathSciNet  Google Scholar 

  37. A. Naso, P. H. Chavanis, and B. Dubrulle, “Statistical mechanics of two-dimensional Euler flows and minimum enstrophy states,” Eur. Phys. J. B 77 (2), 187–212 (2010).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. M. Belotserkovskii.

Additional information

Original Russian Text © O.M. Belotserkovskii, N.N. Fimin, V.M. Chechetkin, 2015, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2015, Vol. 55, No. 9, pp. 1559–1565.

In blessed memory of A.P. Favorskii

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belotserkovskii, O.M., Fimin, N.N. & Chechetkin, V.M. Statistical mechanics of vortex hydrodynamic structures. Comput. Math. and Math. Phys. 55, 1527–1533 (2015). https://doi.org/10.1134/S0965542515090043

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542515090043

Keywords

Navigation