Skip to main content
Log in

Application of moment equations to the mathematical simulation of gas microflows

  • Published:
Computational Mathematics and Mathematical Physics Aims and scope Submit manuscript

Abstract

An approach to the simulation of moderately rarefied gas flows in a transition zone is developed. The applicability of the regularized Grad 13-moment (R13) equations to the numerical simulation of a transition flow between the continual and free-molecular gas flow regimes is explored. For the R13 equations, a numerical method is proposed that is a higher order accurate version of Godunov’s explicit method. A numerical procedure for implementing solid-wall boundary conditions is developed. One- and two-dimensional test problems are solved, including the shock wave structure and the Poiseuille flow in a plane channel. The possibility of applying the R13 equations to the simulation of plane channel and jet flows in a transition regime is explored. To this end, the flow in a square cavity generated by the motion of one of the walls is studied and the operation of the Knudsen pump is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Karniadakis, A. Beskok, and N. Aluru, Microflows and Nanoflows: Fundamentals and Simulation (Springer, New York, 2005).

    Google Scholar 

  2. C. Cercignani, The Boltzmann Equation and Its Application (Springer-Verlag, New York, 1988).

    Book  Google Scholar 

  3. V. V. Aristov and F. G. Cheremisin, “The conservative splitting method for solving Boltzmann’s equation,” USSR Comput. Math. Math. Phys. 20(1), 208–225 (1980).

    Article  MathSciNet  MATH  Google Scholar 

  4. F. G. Cheremisin, “Conservative method of calculating the Boltzmann collision integral,” Dokl. Phys. 42, 607–610 (1997).

    MathSciNet  MATH  Google Scholar 

  5. P. L. Bhatnagar, E. P. Gross, and M. A. Krook, “A model for collision processes in gases,” Phys. Rev. 94, 511–525 (1954).

    Article  MATH  Google Scholar 

  6. E. M. Shakhov, “Generalization of the Krook kinetic equation,” Fluid Dyn. 3, 142–145 (1968).

    Google Scholar 

  7. I. N. Larina and V. A. Rykov, “Calculation of plane flows of a rarefied gas at low Knudsen numbers,” Comput. Math. Math. Phys. 36, 1755–1768 (1996).

    MathSciNet  MATH  Google Scholar 

  8. V. A. Titarev, “Numerical method for computing two-dimensional unsteady rarefied gas flows in arbitrarily shaped domain,” Comput. Math. Math. Phys. 49, 1197–1211 (2009).

    Article  MathSciNet  Google Scholar 

  9. T. G. Elizarova, I. A. Shirokov, and S. Montero, “Numerical simulation of shock-wave structure for argon and helium,” Phys. Fluids 17, 068101 (2005).

    Article  Google Scholar 

  10. G. A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford Univ. Press, Oxford, 1994).

    Google Scholar 

  11. M. S. Ivanov, et al., “SMILE system for 2D/3D DSMC Computations,” Proceedings of the 25th International Symposium on RGD, Ed. by M. S. Ivanov and A. K. Rebrov (Sib. Branch, Russ. Acad. Sci., Novosibirsk, 2007), pp. 539–544.

    Google Scholar 

  12. H. Grad, “On the kinetic theory of rarefied gases,” Commun. Pure Appl. Math. 2, 331–407 (1949).

    Article  MathSciNet  MATH  Google Scholar 

  13. M. N. Kogan, Rarefied Gas Dynamics: Kinetic Theory (Plenum, New York, 1969).

    Book  Google Scholar 

  14. H. Struchtrup and M. Torrilhon, “Regularization of Grad’s 13-moment equations: Derivation and linear analysis,” Phys. Fluids 15, 2668–2680 (2003).

    Article  MathSciNet  Google Scholar 

  15. K. Xu and J. C. Huang, “A unified gas-kinetic scheme for continuum and rarefied flows,” J. Comput. Phys. 229, 7747–7764 (2010).

    Article  MathSciNet  MATH  Google Scholar 

  16. W. Liao, Y. Peng, L-S. Luo, and K. Xu, “Modified Gas-kinetic scheme for shock structures in argon,” Progress Comp. Fluid Dyn. 8(1–4), 97–108 (2008).

    Article  MATH  Google Scholar 

  17. G. H. Tang, Y. H. Zhang, and D. R. Emerson, “Lattice Boltzmann models for nonequilibrium gas flows,” Phys. Rev. E 77, 046701 (2008).

    Article  Google Scholar 

  18. D. A. Perumal, V. Krishna, G. Sarvesh, and A. Dass, “Numerical simulation of gaseous microflows by lattice Boltzmann method,” Int. J. Rec. Trends in Eng. 1(5), 15–20 (2009).

    Google Scholar 

  19. S. Chen and G. D. Doolen, “Lattice Boltzmann method for fluid flows,” Annu. Rev. Fluid Mech. 30, 329–364 (1998).

    Article  MathSciNet  Google Scholar 

  20. L. H. Holway, “Existence of kinetic theory solutions to the shock structure problem,” Phys. Fluids 7, 911–913 (1964).

    Article  MATH  Google Scholar 

  21. H. Grad, “The profile of a steady plane shock wave,” Commun. Pure Appl. Math. 5, 257–300 (1952).

    Article  MathSciNet  MATH  Google Scholar 

  22. M. Torrilhon and H. Struchtrup, “Regularized 13-moment equations: Shock structure calculations and comparison to Burnett models,” J. Fluid Mech. 513, 171–198 (2004).

    Article  MathSciNet  MATH  Google Scholar 

  23. S. Mizzi, “Extended macroscopic models for rarefied gas dynamics in micro-sized domains,” PhD Thesis (Univ. of Strathclyde, 2008).

    Google Scholar 

  24. X. J. Gu and D. R. Emerson, “A High-order moment approach for capturing nonequilibrium phenomena in the transition regime,” J. Fluid Mech. 636, 177–216 (2009).

    Article  MathSciNet  MATH  Google Scholar 

  25. X. J. Gu and D. R. Emerson, “A computational strategy for the regularized 13 moment equations with enhanced wall-boundary conditions,” J. Comput. Phys. 225, 263–283 (2007).

    Article  MATH  Google Scholar 

  26. H. Struchtrup, Macroscopic Transport Equations for Rarefied Gas Flows (Springer, New York, 2005).

    MATH  Google Scholar 

  27. M. Torrilhon, “Two-dimensional bulk microflow simulations based on regularized Grad’s 13-moment equations,” Multiscale Model. Simul. 5, 695–728 (2006).

    Article  MathSciNet  MATH  Google Scholar 

  28. H. Struchtrup and M. Torrilhon, “Boundary conditions for regularized 13-moment-equations for micro-channel-flows,” J. Comput. Phys. 227, 1982–2011 (2008).

    Article  MathSciNet  MATH  Google Scholar 

  29. J. C. Maxwell, “On Stresses in rarefied gases arising from inequalities of temperature,” Phil. Trans. R. Soc. (London) 170, 231–256 (1879).

    Article  MATH  Google Scholar 

  30. I. E. Ivanov and I. A. Kryukov, “High resolution monotone method for computing internal and jet inviscid flows,” Mat. Model. 8(6), 47–55 (1996).

    MathSciNet  MATH  Google Scholar 

  31. M. Yu. Timokhin, “Application of the regularized 13 moment equations for the numerical simulation of gas dynamic flows,” Vestn. Nizhegorod. Univ., No. 4, 1168–1170 (2011).

    Google Scholar 

  32. A. Harten, P. D. Lax, and B. van Leer, “On upstream differencing and Godunov-type schemes for hyperbolic conservation laws,” SIAM Rev. 25, 35–45 (1983).

    Article  MathSciNet  MATH  Google Scholar 

  33. G. S. Glushko, I. E. Ivanov, and I. A. Kryukov, “Computational method for turbulent supersonic flows,” Math. Model. Comput. Simul. 2, 407–422 (2010).

    Article  MathSciNet  Google Scholar 

  34. I. E. Ivanov, I. A. Kryukov, M. Yu. Timokhin, Ye. A. Bondar, A. A. Kokhanchik, and M. S. Ivanov, “Study of shock wave structure by regularized Grad’s set of equations,” Proceedings of the 28th International Symposium on RGD, Ed. by M. Mareschal and A. Santos (Melville, New York, 2012).

    Google Scholar 

  35. H. Alsmeyer, “Density profiles in argon and nitrogen shock waves measured by the absorption of an electron beam,” J. Fluid Mech. 74, 497–513 (1976).

    Article  Google Scholar 

  36. S. M. Yen, “Temperature overshoot in shock waves,” Phys. Fluids 9, 1417–1418 (1966).

    Article  Google Scholar 

  37. A. I. Erofeev and O. G. Fridlender, “Momentum and energy transfer in a shock wave,” Fluid Dyn. 37, 614–623 (2002).

    Article  MATH  Google Scholar 

  38. T. Ohwada, Yo. Sone, and K. Aoki, “Numerical analysis of the Poiseuille and Thermal transpiration flows between two parallel plates on the basic of the Boltzmann equation for hard-sphere molecules,” Phys. Fluids A 1, 2042–2049 (1989).

    Article  MATH  Google Scholar 

  39. D. V. Sivukhin, Thermodynamics and Molecular Physics (Fizmatlit, Moscow, 2005) [in Russian].

    Google Scholar 

  40. Ye.-L. Han, A. Alexeenko, M. Young, and E. P. Muntz, “Experimental and computational studies of temperature gradient driven molecular transport in gas flows through nano/micro-scale channels,” Nanoscale Microscale Thermophys. Eng. 11, 151–175 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Yu. Timokhin.

Additional information

Original Russian Text © I.E. Ivanov, I.A. Kryukov, M.Yu. Timokhin, 2013, published in Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki, 2013, Vol. 53, No. 10, pp. 1721–1738.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ivanov, I.E., Kryukov, I.A. & Timokhin, M.Y. Application of moment equations to the mathematical simulation of gas microflows. Comput. Math. and Math. Phys. 53, 1534–1550 (2013). https://doi.org/10.1134/S0965542513100084

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0965542513100084

Keywords

Navigation