Skip to main content
Log in

Application of the heat balance for estimating the hydrogen dissociation rate constant on the tantalum surface

  • Published:
Thermophysics and Aeromechanics Aims and scope

Abstract

Heat transfer between the surface of a heated wire and ambient gas within the framework of the two-step mechanism of heterogeneous dissociation of hydrogen is studied by the Direct Simulation Monte Carlo method. This mechanism includes four heterogeneous reactions and takes into account the occupancy of activation sites on the surface. Based on the heat balance analysis performed, a dissociation rate constant is proposed, which yields the values of the power spent on gas heating and heterogeneous reactions that coincide with experimental data. The influence of the dissociation rate constant on the occupancy of surface sites and also on the probabilities of dissociation, recombination, and adsorption due to particle-surface collisions is analyzed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C.B. Lukas, Atomic and Molecular Beams: Production and Collimation, CRC Press, Boca Raton, 2014.

    Google Scholar 

  2. P.W. May, Diamond thin films: a 21st-century material, Philos. Trans. Roy. Soc. London, Ser. A, 2000, Vol. 358, P. 473–495.

    Article  ADS  Google Scholar 

  3. A.K. Rebrov, Possibilities of gas phase synthesis of diamond structures from mixtures of hydrogen and hydrocarbons, Phys. Usp., 2017, Vol. 60, P. 179–186.

    Article  ADS  Google Scholar 

  4. I. Langmuir and G.M.J. Mackay, The dissociation of hydrogen into atoms. P. I. Experimental, J. Am. Chem. Soc., 1914, Vol. 36, P. 1708–1722.

    Article  Google Scholar 

  5. G.A. Bird, Molecular Gas Dynamics and the Direct Simulation of Gas Flows, Clarendon Press, Oxford, 1994.

    Google Scholar 

  6. A.A. Morozov, M.Yu. Plotnikov, A.K. Rebrov, and I.B. Yudin, DSMC study of hydrogen and methane flows in a hot tube, in: Proc. 30th Inter. symp. on rarefied gas dynamics, Victoria (Canada), July 10–15, 2016, AIP Conf. Proc., New York, 2016, Vol. 1786, No. 050015-1–050015-8.

  7. A.A. Morozov, T.T. B’yadovskiy, K.V. Kubrak, M.Yu. Plotnikov, and I.B. Yudin, Thermal model-based determination of dissociation degree of hydrogen flowing in a hot tube, Interfacial Phenomena and Heat Transfer, 2019, Vol. 7, No. 2, P. 139–149.

    Article  Google Scholar 

  8. A.K. Rebrov and I.B. Yudin, Heterogeneous physical and chemical processes in a rarefied-gas flow in a channel, Dokl. Phys., 2016, Vol. 61, No. 5, P. 223–226.

    Article  ADS  Google Scholar 

  9. J.N. Smith (Jr.) and W.L. Fite, Reflection and dissociation of H2 on tungsten, J. Chem. Phys., 1962, Vol. 37, No. 4, P. 898–904.

    Article  ADS  Google Scholar 

  10. M. Rutigliano and M. Cacciatore, H atom recombination on W(001): a semiclassical molecular dynamics study, in: Proc. 27th Inter. Symp. Rarefied Gas Dynamics, California (USA), July 10–15 2010, AIP Conf. Proc., New York, 2011, Vol. 1333, P. 464–468.

  11. M.Yu. Plotnikov and E.V. Shkarupa, Heterogeneous activation of rarefied hydrogen in thin tubes, Vacuum, 2016, Vol. 129, P. 31–37.

    Article  ADS  Google Scholar 

  12. H. Koschmieder and V. Raible, Intense atomic-hydrogen beam source, Rev. Sci. Instr., 1975, Vol. 46, P. 536–537.

    Article  ADS  Google Scholar 

  13. M.Yu. Plotnikov, Hydrogen dissociation in rarefied gas flow through a wire obstacle, J. Appl. Mech. Tech. Phys., 2018, Vol. 59, No. 5, P. 794–800.

    Article  ADS  MathSciNet  Google Scholar 

  14. A. Rebrov, M. Plotnikov, Yu. Mankelevich, and I. Yudin, Analysis of flows by deposition of diamond-like structures, Phys. Fluids, 2018, Vol. 30, P. 16106-1–16106-11.

    Article  ADS  Google Scholar 

  15. D.W. Comerford, J.A. Smith, M.N.R. Ashfold, and Yu.A. Mankelevich, On the mechanism of H atom production in hot filament activated H2 and CH4/H2 gas mixtures, J. Chem. Phys., 2009, Vol. 131, P. 044326-1–044326-12.

    Article  ADS  Google Scholar 

  16. Yu.A. Mankelevich, M.N.R. Ashfold, and H. Umemoto, Molecular dissociation and vibrational excitation on a metal hot filament surface, J. Phys. D: Appl. Phys., 2014, Vol. 47, P. 025503-1–025503-12.

    ADS  Google Scholar 

  17. Yu.A. Mankelevich, Plasma- and thermal-simulated deposition of diamond films: multidimensional models of chemical reactors, Doctor’s dissertation, Moscow, 2013.

  18. M.Yu. Plotnikov and E.V. Shkarupa, Direct simulation Monte-Carlo modeling of the dissociation of hydrogen on the wire surface in a resting gas, J. Phys. Conf. Ser., 2019, Vol. 382, P. 012166-1–012166-6.

    Google Scholar 

  19. I. Choquet, A new approach to model and simulate numerically surface chemistry in rarefied flows, Phys. Fluids, 1999, Vol. 11, P. 1650–1661.

    Article  ADS  Google Scholar 

  20. A.N. Molchanova, A.V. Kashkovsky, and Ye.A. Bondar, Surface recombination in the direct simulation Monte-Carlo method, Phys. Fluids, 2018, Vol. 30, P. 107105-1–107105-17.

    Article  ADS  Google Scholar 

  21. M.Yu. Plotnikov and E.V. Shkarupa, DSMC simulation of two-step dissociation-recombination of hydrogen on tantalum surface, Comput. Fluids, 2021, Vol. 214, P. 104778-1–104778-11.

    MathSciNet  MATH  Google Scholar 

  22. B. Stefanov and L. Zarkova, Molecular and reactive thermal-conductivities and accommodation coefficients of dissociating hydrogen up to 2400K, J. Phys. D: Appl. Phys., 1976, Vol. 9, P. 217–1226.

    Article  Google Scholar 

  23. F.O. Goodman and H.Y. Wachman, Formula for thermal accommodation coefficients, J. Chem. Phys., 1967, Vol. 46, No. 6, P. 2376–2386.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to M. Yu. Plotnikov or E. V. Shkarupa.

Additional information

The study was performed within the framework of the State Contracts of the Kutateladze Institute of Thermophysics SB RAS (No. 121031800218-5) and the Institute of Computational Mathematics and Mathematical Geophysics SB RAS (No. 0251-2021-0002).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Plotnikov, M.Y., Shkarupa, E.V. Application of the heat balance for estimating the hydrogen dissociation rate constant on the tantalum surface. Thermophys. Aeromech. 28, 555–562 (2021). https://doi.org/10.1134/S0869864321040090

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869864321040090

Keywords

Navigation