Skip to main content
Log in

Geochemical Thermometry of Ore-Bearing Gabbronorites from an Apophysis of the Yoko-Dovyren Massif: Composition, Amount of Olivine, and Conditions of Sulfide Saturation in the Parental Magma

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The temperature and compositional parameters of the parental magma of ore-bearing apophysis DV10 of the Yoko-Dovyren massif are estimated by the method of geochemical thermometry based on results of thermodynamic modeling of the equilibrium crystallization of the melts of 24 rocks. The thermometric calculations were carried out using the COMAGMAT-5.3 program with increments of 0.5 mol % to a maximum degree of crystallization 75–85%, under oxygen fugacity controlled by the QFM buffer. The model crystallization sequence of minerals was as follows: olivine (Ol) + Cr-Al spinel (Spl) → plagioclase (Pl) → high-Ca pyroxene (Cpx) → orthopyroxene (Opx). Silicate−sulfide immiscibility was calculated to occur mostly before the onset of plagioclase crystallization, which is consistent with initial sulfide saturation of the parental magma. The calculation results demonstrate the convergence and intersection of the model liquid lines of descent at temperatures of about 1185oC. When applied to the average composition of apophysis DV10, this temperature indicates the existence of suspension of the original crystals, including 52.1 wt % cumulus olivine (Fo83.6), 2.3 wt % plagioclase (An79.7), 0.24 wt % clinopyroxene (Mg# 88.8), 1 wt % aluminochromite (Cr# 0.62), and about 0.2% sulfide liquid in a moderately magnesian melt (53.6 wt % SiO2, 7.4 wt % MgO). Therewith the sulfur concentration at sulfide saturation (SCSS) was estimated at 0.083 wt %. This heterogeneous system had a viscosity of 4.71 log units (Pa s) and integral density of 2929 kg/m3. Such rheological properties do not contradict the possibility of the migration and emplacement of the protocumulus mush from the main Dovyren chamber. However, a more probable scenario is the localized accumulation of olivine in the trough-shaped part of the DV10 subchamber, which preceded or occurred in parallel to the accumulation of segregated sulfides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

REFERENCES

  1. Ariskin, A.A., Phase equilibria modeling in igneous petrology: use of COMAGMAT model for simulating fractionation of ferro-basaltic magmas and the genesis of high-alumina basalt, J. Volcanol. Geotherm. Res., 1999, vol. 90, nos. 1–2, pp. 115–162.

    Article  CAS  Google Scholar 

  2. Ariskin, A.A. and Barmina, G.S., Modelirovanie fazovykh ravnovesii pri kristallizatsii bazal’tovykh magm (Modeling of Phase Equilibria during Crystallization of Basaltic Magmas), Moscow: Nauka, 2000.

  3. Ariskin, A.A., Konnikov, E.G., Danyushevsky, L.V., et al., The Dovyren intrusive complex: problems of petrology and Ni sulfide mineralization, Geochem. Int., 2009, vol. 47, no. 5, pp. 425–453.

    Article  Google Scholar 

  4. Ariskin, A.A., Kislov, E.V., Danyushevsky, L.V., et al., Cu–Ni–PGE fertility of the Yoko–Dovyren layered massif (northern transbaikalia, russia): thermodynamic modeling of sulfide compositions in low mineralized dunites based on quantitative sulfide mineralogy, Miner. Deposita, 2016, vol. 51, pp. 993–1011.

    Article  CAS  Google Scholar 

  5. Ariskin, A.A., Bychkov, K.A., Nikolaev, G.S., Modeling of trace-element composition of sulfide liquid in a crystallizing basalt magma: Development of the R-factor concept, Geochem. Int., 2017, vol. 55, no. 5, pp. 465–473.

    Article  CAS  Google Scholar 

  6. Ariskin, A.A., Bychkov, K.A., Nikolaev, G.S., and Barmina, G.S., The COMAGMAT-5: modeling the effect of Fe–Ni sulfide immiscibility in crystallizing magmas and cumulates, J. Petrol., 2018, vol. 59, no. 2, pp. 283–298.

    Article  CAS  Google Scholar 

  7. Ariskin, A.A., Nikolaev, G.S., Danyushevsky, L.V., et al., Geochemical evidence for the fractionation of iridium group elements at the early stages of crystallization of the Dovyren magmas (northern Baikal area, Russia), Russ. Geol. Geophys., 2018a, vol. 59, no. 5, pp. 459–471.

    Article  Google Scholar 

  8. Ariskin, A.A., Danyushevsky, L.V., Nikolaev, G.S., et al., The Dovyren intrusive complex (Southern Siberia, Russia): insights into dynamics of an open magma chamber with implications for parental magma origin, composition, and Cu–Ni–PGE fertility, Lithos, 2018b, vol. 302–303, pp. 242–262.

    Article  Google Scholar 

  9. Ariskin, A.A., Nikolaev, G.S., Danyushevsky, L.V., et al., Genetic interpretation of the distribution of PGE and chalcogens in sulfide-mineralized rocks from the Yoko-Dovyren layered intrusion, Geochem. Int., 2018c, vol. 56, no. 13, pp. 1322–1340.

    Article  CAS  Google Scholar 

  10. Ariskin, A.A., Danyushevsky, L.V., Fiorentini, M.L., et al., Petrology, geochemistry and origin of sulfide-bearing and PGE-mineralized troctolites from the Konnikov zone in the Yoko–Dovyren layered intrusion, Russ. Geol. Geophys., 2020, vol. 61, no. 5–6, pp. 611–633.

    Article  Google Scholar 

  11. Ariskin, A.A., Pshenitsyn, I.V., Dubinina, E.O., et al., Sulfur isotope composition of olivine gabbronorites from a mineralized apophysis of the Yoko–Dovyren intrusion, Northern Transbaikalia, Russia, Petrology, 2021, vol. 29, no. 6, pp. 597–613.

    Article  CAS  Google Scholar 

  12. Ariskin, A.A., Bychkov, K.A., Nikolaev, G.S., Barmina, G.S., Updated COMAGMAT-5: modeling the effects of sulfide precipitation in parallel to the crystallization of alumino-chromian spinel, Petrology, 2023, vol. 31, no. 5, pp. 558–575.

    Article  CAS  Google Scholar 

  13. Ariskin, A.A., Barmina, G.S., Koptev-Dvornikov, E.V., et al., Intrusive COMAGMAT: from simple magma differentiation models to complex algorithms simulating the structure of layered intrusions, Adv. in G., A. C., Planet. Sci, 2023, vol. 276, pp. 101–119.

    Google Scholar 

  14. Barmina, G.S. and Ariskin, A.A., Estimation of chemical and phase characteristics for the initial magma of the Kiglapait troctolite intrusion, Labrador, Canada, Geochem. Int., 2002, vol. 40, no. 10, pp. 972–983.

    Google Scholar 

  15. Barnes, S.J. and Mungall, J.E., Le Vaillant m. et al. sulfide–silicate textures in magmatic Ni–Cu–PGE sulfide ore deposits: disseminated and net-textured ores, Am. Mineral., 2017, vol. 102, pp. 473–506.

    Article  Google Scholar 

  16. Barnes, S.J., Le Vaillant, M., Godel, B., Lesher, C.M., droplets and bubbles: solidification of sulphide-rich vapour-saturated orthocumulates in the Norilsk–Talnakh Ni-Cu-PGE ore-bearing intrusions, J. Petrol., 2019, vol. 60, pp. 1–31.

    Article  Google Scholar 

  17. Danyushevsky, L.V. and Plechov, P.Y., Petrolog3: integrated software for modeling crystallization processes, Geochem. Geophys. Geosyst. Geochem. Soc., 2011, vol. 12, no. 7, pp. 1–32.

    Google Scholar 

  18. Frenkel’, M.Ya., Ariskin, A.A., Barmina, G.S., et al., Geochemical thermometry of magmatic rocks: principles of method and examples of application, Geokhimiya, 1987, no. 11, pp. 1546–1562.

  19. Ghiorso, M.S. and Sack, R.O., Chemical mass transfer in magmatic processes. IV. A revised and internally consistent thermodynamic model for the interpolation and extrapolation of liquid-solid equilibria in magmatic systems at elevated temperatures and pressures, Contrib. Mineral. Petrol., 1995, vol. 119, nos. 2–3, pp. 197–212.

    Article  CAS  Google Scholar 

  20. Gongalsky, B.I., Krivolutskaya, N.A., Ariskin, A.A., and Nikolaev, G.S., The Chineysky gabbronorite–anorthosite layered massif (northern Transbaikalia, Russia): its structure, Fe–Ti–V and Cu-PGE deposits, and parental magma composition, Miner. Deposita, 2016, vol. 51, no. 8, pp. 1013–1034.

    Article  CAS  Google Scholar 

  21. Gualda, G.A.R., Ghiorso, M.S., Lemons, R.V., and Carley, T.L., Rhyolite–melts: a modified calibration of melts optimized for silica-rich, fluid-bearing magmatic systems, J. Petrol., 2012, vol. 53, no. 5, pp. 875–890.

    Article  CAS  Google Scholar 

  22. Haar, L., Gallagher, J.S., and Kell, G.S., NBS/NRC steam tables thermodynamic and transport properties and computer programs for vapor and liquid states of water in Si units, Hemisphere Pub. Corp., 1984, vol. 57, no. 9, pp. 317–320.

    Google Scholar 

  23. Kislov, E.V., Ioko-Dovyrenskii rassloennyi massiv (Yoko–Dovyren Layered Massif), Ulan-Ude: Izd. Buryatskogo NTs, 1998.

  24. Kostitsyn, Y.A., Krivolutskaya, N.A., Somsikova, A.V., et al., Geochemical features of potentially ore-bearing mafic intrusions at the eastern Norilsk region and their relationships with lavas (NW Siberian traps province), Minerals, 2023, vol. 13, no. 2, p. 213.

    Article  CAS  Google Scholar 

  25. Krivolutskaya, N.A., Ariskin, A.A., Sluzhenikin, S.F., and Turovtsev, D.M., Geochemical thermometry of rocks of the Talnakh intrusion: assessment of the melt composition and the crystallinity of the parental magma, Petrology, 2001, vol. 9, no. 5, pp. 389–414.

    Google Scholar 

  26. Krivolutskaya, N.A. and Sobolev, A.V., Siberian Traps and Pt-Cu-Ni Deposits in the Noril’sk Area (Springer, 2016).

    Book  Google Scholar 

  27. Likhachev, A.P., Platino-medno-nikelevye i platinovye mestorozhdeniya (Platinum–Copper–Nickel and Platinum Deposits), Moscow: Eslan, 2006.

  28. Maier, W.D., Platinum-group element (PGE) deposits and occurrences: mineralization styles, genetic concepts, and exploration criteria, J. Afr. Earth Sci., 2005, vol. 41, pp. 165–191.

    Article  CAS  Google Scholar 

  29. Marsh, B.D., On the crystallinity, probability of occurrence, and rheology of lava and magma, Contrib. Mineral. Petrol., 1981, vol. 78, pp. 85–98.

    Article  CAS  Google Scholar 

  30. Mastin, L.G., Insights into volcanic conduit flow from an opensource numerical model, Geochem. Geophys. Geosyst., 2002, vol. 3, no. 7, pp. 1–18.

    Article  Google Scholar 

  31. Naldrett, A.J., Magmatic Sulfide Deposits: Geology, Geochemistry and Exploration, (Heidelberg, Berlin: Springer-Verlag, 2004).

    Book  Google Scholar 

  32. Naldrett, A.J., Fundamentals of magmatic sulfide deposits, Magmatic Ni–Cu and PGE Deposits: Geology, Geochemistry and Genesis, Rev. Econ. Geol., 2011, vol. 17, pp. 1–50.

    Google Scholar 

  33. Orsoev, D.A., Mekhonoshin, A.S., Kanakin, S.V., et al., Gabbro–peridotite sills of the Late Riphean Dovyren plutonic complex (northern Baikal area, Russia), Russ. Geol. Geophys., 2018, vol. 59, no. 5, pp. 459–471.

    Article  Google Scholar 

  34. Pshenitsyn, I.V., Ariskin, A.A., Nikolaev, G.S., et al., Morphology, mineralogy, and composition of sulfide droplets in picrodolerite from a near-bottom apophysis of the Yoko-Dovyren layered intrusion, Petrology, 2020, vol. 28, no. 3, pp. 246–262.

    Article  CAS  Google Scholar 

  35. Pshenitsyn, I.V., Ariskin, A.A., Nikolaev, G.S., et al., Geochemistry and petrology of protosulfide melts in an ore-bearing apophysis of the Yoko-Dovyren intrusion, Geochem. Int., 2022, vol. 67, no. 3, pp. 235–255.

    Article  Google Scholar 

  36. Rad’ko, V.A., Model of dynamic differentiation of intrusive traps of the Siberian Platform, Geol. Geofiz., 1991, no. 11, pp. 19–27.

  37. Ripley, E.M. and Li, C., Sulfide saturation in mafic magmas: is external sulfur required for magmatic Ni–Cu–(PGE) ore genesis, Econ. Geol., 2013, vol. 108, pp. 45–58.

    Article  CAS  Google Scholar 

  38. Ryabov, V.V., Shevko, A.Ya., and Gora, M.P., Magmaticheskie obrazovaniya Noril’skogo raiona. T. 1. Petrologiya trappov (Magmatic Complexes of the Norilsk District. Vol. 1. Petrology of Traps), Novosibirsk: Nonparel’, 2nd Ed., 2001.

  39. Shaw, H.R., Viscosities of magmatic silicate liquids: an empirical method of prediction, Am. J. Sci., 1972, vol. 272, no. 9, pp. 870– 893.

    Article  CAS  Google Scholar 

  40. Spiridonov, E.M., Ore-magmatic systems of the Noril’sk ore field, Russ. Geol. Geophys., 2010, vol. 51, pp. 1059–1077.

    Article  Google Scholar 

  41. Wager, L.R. and Brown, G.M., Layered Igneous Rocks, Edinburgh: Oliver & Boyd, 1968.

    Google Scholar 

Download references

Funding

This study was carried out under government-financed research project FMUS-2019-0004 for Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Pshenitsyn.

Ethics declarations

The authors of this work declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Publisher’s Note.

Pleiades Publishing remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pshenitsyn, I.V., Ariskin, A.A. & Sobolev, S.N. Geochemical Thermometry of Ore-Bearing Gabbronorites from an Apophysis of the Yoko-Dovyren Massif: Composition, Amount of Olivine, and Conditions of Sulfide Saturation in the Parental Magma. Petrology 32, 111–127 (2024). https://doi.org/10.1134/S0869591124010089

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591124010089

Keywords:

Navigation