Skip to main content
Log in

Metasomatic Transformation of Amphibolites into Corundum-Bearing Plagioclasites: Zoning and Numerical Model of the Process with Reference to the Unique Khitostrov Corundum Deposit, Fennoscandian Shield

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

The paper presents results of a study of middle crustal (amphibolite-facies level) desilicated rocks exemplified by corundum-bearing plagioclasites developing after metabasites at the unique Khitostrov corundum deposit in the Belomorian–Lapland orogen of the Fennoscandian shield, with emphasis placed onto newly acquired geological data, documentation and analysis of the metasomatic zoning, determination of the P–T conditions of its formation, and a model of the metasomatic process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

Notes

  1. Mineral symbols are according to (Whitney and Evans, 2010).

  2. Composition parameters of minerals: XMg = Mg/(Mg + Fe) for amphibole, biotite, and staurolite.

REFERENCES

  1. Akimova, E.Yu. and Kol’tsov, A.B., Thermodynamic modeling of the formation of corundum-bearing metasomatic rocks in the Belomorian Mobile Belt, Fennoscandian Shield, Petrology, 2022, vol. 30, no. 1, pp. 60–81.

    Article  Google Scholar 

  2. Aranovich, L.Ya., Mineral’nye ravnovesiya mnogokomponentnykh tverdykh rastvorov (Mineral Equilibria of Multicomponent Solid Solutions), Moscow: Nauka, 1991.

  3. Aranovich, L.Ya., The role of brines in high-temperature metamorphism and granitization, Petrology, 2017, vol. 25, no. 5, pp. 485–497.

    Article  Google Scholar 

  4. Aranovich, L.Ya., Bortnikov, N.S., Bushmin, S.A., et al., Fluid flows in regional deformation zones, Petrology, 2009, vol. 17, no. 4, pp. 389–409.

    Article  Google Scholar 

  5. Aranovich, L.Ya. and Kozlovskii, V.M., The role of silica mobility in the formation of “incipient” eclogites, Geochem. Int., 2009, vol. 47, no. 2, pp. 199–204.

    Article  Google Scholar 

  6. Aranovich, L.Ya., Zakirov, I.V., Sretenskaya, N.G.,and Gerya, T.V., Ternary system H2O–CO2–NaCl at high TP parameters: an empirical mixing model, Geochem. Int., 2010, vol. 48, no. 5, pp. 1-10.

    Article  Google Scholar 

  7. Avchenko, O.V., Vysotskiy, S.V., and Chudnenko, K.V., Experience of modeling the garnet + orthopyroxene + spinel + plagioclase reaction by the method of thermodynamic potential minimization, Dokl. Earth Sci., 2007, vol. 415, no. 5, pp. 773–776.

    Article  Google Scholar 

  8. Balagansky, V.V., Major Stages of the Paleoproterozoic Tectonic Evolutio of the Northeastern Baltic Shield, Extended Abstract of Doctoral (Geol.-Min) Dissertation, St. Petersburg, 2002.

  9. Bebout, G.E. and Penniston-Dorland, S.C., Fluid and mass transfer at subduction interfaces - the field metamorphic record, Lithos, 2016, vol. 240-243, pp. 228–258.

    Article  Google Scholar 

  10. Belyaev, O.A., Bushmin, S.A., Volodichev, O.I., et al., Fatsii metamorfizma vostochnoi chasti Baltiiskogo shchita (Metamorphic Facies of the Eastern Baltic Shield), Leningrad: Nauka, 1990.

  11. Bindeman, I.N. and Serebryakov, N.S., Geology, petrology and O and H isotope geochemistry of remarkably 18O depleted Paleoproterozoic rocks of the Belomorian Belt, Karelia, Russia, attributed to global glaciation 2.4 Ga, Earth Planet. Sci. Lett., 2011, vol. 306, pp. 163–174.

    Article  Google Scholar 

  12. Bushmin, S.A. and Glebovitskii, V.A., Scheme of mineral facies of metamorphic rocks, Zap. Ross. Mineral. O-va, 2008, vol. 137, no. 2, pp. 1–13.

    Google Scholar 

  13. Bushmin, S.A., Vapnik, E.A., Ivanov, M.V., et al., Fluids in high-pressure granulites, Petrology, 2020, vol. 28, no. 1, pp. 17–46.

    Article  Google Scholar 

  14. Bushmin, S.A. and Glebovitsky, V.A., Scheme of mineral facies of metamorphic rocks and its application to fennoscandian shield with representative sites of orogenic gold mineralization, Transactions of Karelian Research Centre RAS. Precambr. Geol. Ser., 2016, no. 2, pp. 3–27.

  15. Dolivo-Dobrovol’skii, D.V., TriQuick: A Program for Constructing the Binary and Ternary Scatter Diagrams, as well as for Imaging, Creation, and Editing of Diagram Graphics, 2012. http://www.dimadd.ru/ru/Programs/triquick.

  16. Dolivo-Dobrovol’skii, D.V., TC_Comb: a Shell of the THERMOCALC Programme for Efficient Multiequilibrium Geothermobarometry by avPT Method with Visualization and Analysis of Results, 2013. http://www.dimadd.ru/ru/Programs/tccomb.

  17. Glazunkov, V.M., Results of Detailed Searching and Prospecting–Appraisal Works for Faceting and Collection Corundum in North Karelia (1984–1985), Leningrad: SPO “Severkvartssamotsvety”, 1985, Report no. 24808.

  18. Glebovitsky, V.A., Tectonics and metamorphism of the Early Precambrian of the eastern Baltic Shield, Regional. Geol. Metallogen., 1993, no. 1, pp. 7–24.

  19. Glebovitsky, V.A., Early Precambrian of Russia, London: Harwood Acad. Publ, 1997.

    Google Scholar 

  20. Glebovitsky, V.A. and Bushmin, S.A., Poslemigmatitovyi metasomatoz (Postmigmatite Metasomatism), Leningrad: Nauka, 1983.

  21. Glebovitsky, V.A., Miller, Yu.V., Drugova, G.M., et al., The structure and metamorphism of the Belomoride–Lapland Collision Zone, Geotectonics, 1996, vol. 30, no. 1, pp. 53–63.

    Google Scholar 

  22. Grichuk, D.V., Thermodynamic model of ore-forming processes in a submarine island-arc hydrothermal system, Geochem. Int., 2012, vol. 50, no. 13, pp. 1069–1101.

    Article  Google Scholar 

  23. Holland, T.J.B. and Powell, R., An internally consistent thermodynamic dataset for phases of petrological interest, J. Metamorph. Geol., 1998, vol. 16, pp. 309–343.

    Article  Google Scholar 

  24. Ivanov, M.V. and Bushmin, S.A., Thermodynamic model of the fluid system H2O–CO2–NaCl at P-T parameters of the middle and lower crust, Petrology, 2021, vol. 29, no. 1, pp. 77–88.

    Article  Google Scholar 

  25. Ivanov, M.V. and Bushmin, S.A., Equation of state of the H2O–CO2–CaCl2 fluid system and properties of fluid phases at P-T parameters of the middle and lower crust, Petrology, 2019, vol. 27, no. 4, pp. 431–445.

    Article  Google Scholar 

  26. Karta mineral’nykh fatsii metamorficheskikh i metasomaticheskikh porod vostochnoi chasti Baltiiskogo shchita, masshtab 1 : 1500 000 (Map of Mineral Facies of Metamorphic and Metasomatic Rocks of the Eastern Baltic Shield, Scale 1 : 1500 000), Belyaev, O.A., Bushmin, S.A., Volodichev, O.I., et al., Eds. (VSEGEI, Leningrad, 1991).

  27. Kol’tsov, A.B., Effect of the sources and evolution of solutions on the composition of metasomatites, Geochem. Int., 2015, vol. 53, no. 2, pp. 133–149.

    Article  Google Scholar 

  28. Kol’tsov, A.B. and Bushmin, S.A., Metasomatism under thermogradient conditions: models for the coupled heat transfer and fluid‒rock interaction, Petrology, 2022, no. 3, pp. 305–324.

  29. Kolesnik, Yu.N., Vysokotemperaturnyi metasomatoz v ul’traosnovnykh massivakh (High-Temperature Metasomatism in Ultramafic Rocks), Novosibirsk: Nauka, 1976.

  30. Korzhinskii, D.S., Open systems with perfectly mobile components and phase rule, Izv. Akad. Nauk SSSR. Ser. geol., 1949, no. 2, pp. 3-14.

  31. Korzhinskii, D.S., Teoriya metasomaticheskoi zonal’nosti (Theory of Metasomatic Zoning), Moscow: Nauka, 1982.

  32. Krylov, D.P., Anomalous 18O/16O ratios in the corundum-bearing rocks of Khitostrov, Northern Karelia, Dokl. Earth Sci., 2008, vol. 419, no. 4, pp. 453–456.

    Article  Google Scholar 

  33. Krylov, D.P. and Glebovitsky, V.A., Local distribution of oxygen isotopes and fluid exchange during genesis of the corundum-bearing rocks of Khitostrov Island, Dokl. Earth Sci., 2017, vol. 473, no. 2, pp. 441–443.

    Article  Google Scholar 

  34. Lahtinen, R. and Huhma, H., A revised geodynamic model for the Lapland–Kola orogen, Precambrian Res., 2019, vol. 330, pp. 1–19.

    Article  Google Scholar 

  35. Levitskii, V.I., Petrologiya i geokhimiya metasomatoza pri formirovanii kontinental’noi kory (Petrology and Geochemistry of Metasomatism during Formation of Continental Crust), Novosibirsk: GEO, 2005.

  36. Manning, C.E., Thermodynamic modeling of fluid-rock interaction at mid-crustal to upper-mantle conditions, Rev. Mineral. Geochem., 2013, vol. 76, pp. 135–164.

  37. Manning, C.E. and Aranovich, L.Y., Brines at high pressure and temperature: thermodynamic, petrologic and geochemical effects, Precambrian Res., 2014, vol. 253, pp. 6–16.

    Article  Google Scholar 

  38. Manning, C.E., Hydrotermal properties of geologic fluids, Elements, 2020, vol. 16, pp. 375–380.

    Article  Google Scholar 

  39. Manning, C.E. and Frezzotti, M.L., Subduction-zone fluids, Elements, 2020, vol. 16, pp. 395–400.

    Article  Google Scholar 

  40. Mints, M.V., Dokukina, K.A., and Konilov, A.K., The Meso-Neoarchaean Belomorian eclogite province: tectonic position and geodynamic evolution, Gondwana Res., 2014, vol. 25, pp. 561–584.

    Article  Google Scholar 

  41. Pokrovskii, V.A. and Helgeson, H.C., Thermodynamic properties of aqueous species and the solubilities of minerals at high pressures and temperatures: the system Al2O3–H2O–NaCl, Am. J. Sci., 1995, vol. 295, pp. 1255–1342.

    Article  Google Scholar 

  42. Powell, R. and Holland, T.J.B., An internally consistent thermodynamic dataset with uncertainties and correlations: 3. Application methods, worked examples and a computer program, J. Metamorph. Geol., 1988, vol. 6, pp. 173–204.

    Article  Google Scholar 

  43. Powell, R. and Holland, T.J.B., Optimal geothermometry and geobarometry, Am. Mineral., 1994, vol. 79, pp. 120–133.

    Google Scholar 

  44. Safonov, O.G., Butvina, V.G., Limanov, E.V., and Kosova, S.A., Mineral indicators of reactions involving fluid salt components in the deep lithosphere, Petrology, 2019, vol. 27, no. 5, pp. 489–515.

    Article  Google Scholar 

  45. Serebryakov, N.S., Petrology of Corundum-Bearing Rocks of the Chupa Sequence of the Belomorian Mobile Belt: Evidence from the Chupa Segment, Extended Abstract of Candidate’s (Geol.-Min.) Dissertation, Moscow: IGEM RAN, 2004.

  46. Serebryakov, N.S. and Aristov, Vs.V., Conditions of localization of manifestation of collection corundum in the rocks of the Chupa Sequence of the Belomorian complex of Northern Karelia, Izv. Vyssh. Ucheb. Zaved. Geol. Razved., 2004, no. 4, pp. 36–42.

  47. Serebryakov, N.S., Astaf’ev, B.Yu., Voinova, O.A., and Presnyakov, S.L., First Th–U–Pb single zircon dating of metasomatites from the Belomorian Mobile Belt, Dokl. Earth Sci., 2007, vol. 413A, no. 3, pp. 388-392.

    Article  Google Scholar 

  48. Serebryakov, N.S. and Rusinov, V.L., High-grade calcium–sodium metasomatism and corundum formation in the Precambrian Belomorian Mobile Belt, Karelia, Dokl. Earth Sci., 2004, vol. 395A, no. 3, pp. 389–393.

    Google Scholar 

  49. Shock, E.L., Sassani, D.C., Willis, M., and Sverjensky, D.A., Inorganic species in geologic fluids: correlations among standard molal thermodynamic properties of aqueous ions and hydroxide complexes, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 5, pp. 907–950.

    Article  Google Scholar 

  50. Shvarov, Yu.V., Algorithmization of the numeric equilibrium modeling of dynamic geochemical processes, Geochem. Int., 1999, vol. 37, no. 6, pp. 571–576.

    Google Scholar 

  51. Slabunov, A.I., Geologiya i geodinamika arkheiskikh podvizhnykh poyasov (na primere Belomorskoi provintsii Fennoskandinavskogo shchita) (Geology and Geodynamics of Archean Mobile Belts: Evidence from the Belomorian Province of the Fennoscandian Shield), Petrozavodsk: KarNTs RAN, 2008.

  52. Slabunov F.I., Balaganskii V.V. Shchipanskii A.A. Mesoarchean to Paleoproterozoic crustal evolution of the Belomorian Province, Fennoscandian Shield, and the tectonic setting of eclogites, Russ. Geol. Geophys., 2021, vol. 62, no. 5, pp. 525–546.

    Article  Google Scholar 

  53. Steele-MacInnis M., Manning, C.E., Fluids of the lower crust: deep is different, Annu. Rev. Earth Planet. Sci., 2018, vol. 46, pp. 67–97.

    Article  Google Scholar 

  54. Sverjensky, D.A., Hemley, J.J., and D’Angelo, W.M., Thermodynamic assessment of hydrothermal alkali feldspar–mica–aluminosilicate equilibria, Geochim. Cosmochim. Acta, 1991, vol. 55, no. 4, pp. 989–1004.

    Article  Google Scholar 

  55. Sverjensky, D.A., Shock, E.L., and Helgeson, H.C., Predictions of the thermodynamic properties of aqueous metal complexes to 1000oC and 5 kb, Geochim. Cosmochim. Acta, 1997, vol. 61, no. 7, pp. 1359–1412.

    Article  Google Scholar 

  56. Terekhov, E.N. and Levitskii, V.I., Geological-structural tendencies in distribution of the corundum mineralization in the northwestern Belomorian Zone, Izv. Vyssh. Ucheb. Zaved. Geol. Razved., 1991, no. 6, pp. 3-13.

  57. Ustinov, V.I., Baksheev, I.A., and Serebryakov, N.S., Oxygen isotopic composition of the mineral-forming fluids of corundum-bearing metasomatic rocks at the Khitoostrov and Varaka mineral occurrences, Northern Karelia, Geochem. Int., 2008, vol. 46, no. 11, pp. 1174–1178.

    Article  Google Scholar 

  58. Vysotskiy, S.V., Ignat’ev, A.V., Levitskii, S.Yu., et al., New data on stable isotopes in minerals from corundum-bearing formations of Northern Karelia (Russia), Dokl. Earth Sci., 2011, vol. 439, no. 1, pp. 964–966.

    Article  Google Scholar 

  59. Vysotskiy, S.V., Ignat’ev, A.V., Levitskii, V.I., et al., Geochemistry of stable oxygen and hydrogen isotopes in minerals and corundum-bearing rocks in Northern Karelia as an indicator of their unusual genesis, Geochem. Int., 2014, vol. 52, no. 9, pp. 773–782.

    Article  Google Scholar 

  60. Whitney, D.L. and Evans, B.W., Abbreviations for names of rock-forming minerals, Am. Mineral., 2010, vol. 95, pp. 185–187.

    Article  Google Scholar 

  61. Zakharov, D.O., Bindeman, I.N., Slabunov, A.I., et al., Dating the Palaeoproterozoic snowball earth glaciations using contemporaneous subglacial hydrothermal systems dating the Palaeoproterozoic snowball earth glaciations using contemporaneous subglacial hydrothermal systems, Geology, 2017, vol. 45, pp. 667–670.

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the director of the regionally important specially protected territories in the Republic of Karelia I.V. Kiprukhin and their colleagues V.M. Kozlovskii and N.I. Frishman for substantial aid in organizing and conducting the fieldwork. D.V. Dolivo-Dobrovol’skii, V.I. Ivashchenko, and V.M. Kozlovskii are thanked for fruitful discussions of scientific problems formulated and discussed in this paper. The authors are indebted to the reviewers L.Ya. Aranovich and N.N. Akinfiev for constructive criticism that led us to improve the manuscript.

Funding

This study was supported by Russian Science Foundation, Project 22-27-00270, https://rscf.ru/project/22-27-00270/.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Bushmin.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Kurdyukov

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bushmin, S.A., Kol’tsov, A.B., Lebedeva, Y.M. et al. Metasomatic Transformation of Amphibolites into Corundum-Bearing Plagioclasites: Zoning and Numerical Model of the Process with Reference to the Unique Khitostrov Corundum Deposit, Fennoscandian Shield. Petrology 31, 604–623 (2023). https://doi.org/10.1134/S0869591123060061

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591123060061

Keywords:

Navigation