Skip to main content
Log in

Magmatic Evolution of Changbaishan Tianchi Volcano, China–North Korea: Evidence from Mineral-Hosted Melt and Fluid Inclusions

Petrology Aims and scope Submit manuscript

Abstract

Data on mineral-hosted melt, fluid, and crystalline inclusions were used to study the composition and evolution of melts that produced rocks of Changbaishan Tianchi volcano, China–North Korea, and estimate their crystallization parameters. The melts crystallized within broad ranges of temperature (1220–700°C) and pressure (3100–1000 bar), at a drastic change in the redox potential: Δ log \(f_{O_2}\) from NNO + 0.92 to +1.42 for the basalt melts, NNO –1.61 to –2.09 for the trachybasaltic andesite melts, NNO –2.63 to –1.89 for the comendite melts, and NNO –1.55 to –3.15 for the pantellerite melts. The paper reports estimates of the compositions of melts that produced the continuous rock series from trachybasalt to comendite and pantellerite. In terms of trace-element concentrations, all of the mafic melts are comparable with OIB magmas. The silicic melts are strongly enriched in trace elements and REE. The most strongly enriched melts contain concentrations of certain elements almost as high as in ores of these elements. The paper reports data on H2O concentrations in melts of different composition. It is demonstrated that the variations in the H2O concentrations were controlled by magma degassing. Data are reported on the Sr and Nd composition of the rocks. The deviations in the Sr isotopic composition are proportional to the 87Sr/86Sr ratio and could be produced in a melt with a high enough 87Sr/86Sr ratio during a geologically fairly brief time period. The evolution of melts that produced rocks of the volcano was controlled by crystallization differentiation of the parental basalt magmas at insignificant involvement of melt mixing and liquid immiscibility of silicate and sulfide melts. The alkaline salic rocks were generated in shallow-sitting (13–3.5 km) magmatic chambers in which the melts underwent profound differentiation that gave rise to pantellerites and comendites strongly enriched in trace elements (Th, Nb, Ta, Zr, and REE). Data on the composition of the magmas and parameters of their derivation are used to develop a generalized petrologic–geodynamic model for the origin of Changbaishan Tianchi volcano.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • Anderson, A.T. and Wright, R., Phenocrysts and glass inclusions and their bearing on oxidation and mixing of basaltic magmas, Kilauea Volcano, Hawaii, Am. Mineral., 1972, vol. 57, pp. 188–216.

    Google Scholar 

  • Andreeva, O.A., Naumov, V.B., Andreeva, I.A., et al., Basaltic melts in olivine from alkaline pumice of Primor’e: evidence from the study of melt inclusions, Dokl. Earth Sci., 2011, vol. 438, no. 1, pp. 656–661.

    Article  Google Scholar 

  • Andreeva, O.A., Yarmolyuk, V.V., Andreeva, I.A., et al., The composition and sources of magmas of Changbaishan Tianchi Volcano (China–North Korea), Dokl. Earth Sci., 2014, vol. 456, no. pp. 572–578.

    Google Scholar 

  • Andreeva O.A., Andreeva I.A., Yarmolyuk, V.V., et al., Evolution of melts of the Changbaishan Tianchi Volcano (China–North Korea) as a model of ore–magmatic system formation: data from melt inclusions studies, Dokl. Earth Sci., 2016, vol. 466, no. 1, pp. 82–87.

    Article  Google Scholar 

  • Le Bas, M.J., Le Maitre, R.W., Streckeisen, A, et al., A chemical classification of volcanic rocks based on the total alkali–silica diagram, J. Petrol., 1986, vol. 27, pp. 745–750.

    Article  Google Scholar 

  • Bottinga, Y. and Richet, P., High pressure and temperature equation of state and calculation of the thermodynamic properties of gaseous carbon dioxide, Am. J. Sci., 1981, vol. 281, pp. 615–660.

    Article  Google Scholar 

  • Burgisser, A. and Scaillet, B., Redox evolution of a degassing magma rising to the surface, Nature, 2007, vol. 445, pp. 194–197.

    Article  Google Scholar 

  • Carmichael, I.S.E. and Ghiorso, M.S., The effect of oxygen fugacity on the redox state of natural liquids and their crystallizing phases, Rev. Mineral. Geochem., 1990, vol. 24, pp. 191–212.

    Google Scholar 

  • Chen, Y., Zhang, Y., Graham, D., et al., Geochemistry of Cenozoic basalts and mantle xenoliths in northeast China, Lithos, 2007, vol. 96, pp. 108–126.

    Article  Google Scholar 

  • Choi, H.-O., Choi, S.H., Schiano, P., et al., Geochemistry of olivine-hosted melt inclusions in the Baekdusan (Changbaishan) basalts: implications for recycling of oceanic crustal materials into the mantle source, Lithos, 2017, vol. 284–285, pp. 194–206.

    Google Scholar 

  • Civetta, L., D’Antonio, M., Orsi, G., and Tilton, G.R., The geochemistry of volcanic rocks from Pantelleria Island, Sicily Channel: petrogenesis and characteristics of the mantle source region, J. Petrol., 1998, vol. 39, no. 8, pp. 1453–1491.

    Google Scholar 

  • Condie, K.C., High field strength element ratios in Archean basalts: a window to evolving sources of mantle plumes?, Lithos, 2005, vol. 79, pp. 491–504.

    Article  Google Scholar 

  • Danyushevsky, L.V., Falloon, T.J., Sobolev, A.V., et al., The H2O content of basalt glasses from southwest pacific back-arc basins, Earth Planet. Sci. Lett., 1993, vol. 117, pp. 347–362.

    Article  Google Scholar 

  • Danyushevsky, L.V., Della-Pasqua, F.N., and Sokolov, S., Re-equilibration of melt inclusions trapped by magnesian olivine phenocrysts from subduction-related magmas: petrological implications, Contrib. Mineral. Petrol., 2000, vol. 138, no. 1, pp. 68–83.

    Article  Google Scholar 

  • Danyushevsky, L.V., The effect of small amounts of H2O on crystallisation of mid-ocean ridge and backarc basin magmas, J. Volcanol. Geotherm. Res., 2001, vol. 110, pp. 265–280.

    Article  Google Scholar 

  • Danyushevsky, L.V., McNeill, A.W., and Sobolev, A.V., Experimental and petrological studies of melt inclusions in phenocrysts from mantle-derived magmas: an overview of techniques, advantages and complications, Chem. Geol., 2002, vol. 183, nos. 1–4, pp. 5–24.

    Article  Google Scholar 

  • Davies, G.R. and Macdonald, R., Crustal influences in the petrogenesis of the Naivasha basalt–comendite complex: combined trace element and Sr-Nd-Pb isotope constraints, J. Petrol., 1987, vol. 28, no. 6, pp. 1009–1031.

    Article  Google Scholar 

  • Denisov, E.P., On Baekdusan (Pektusan) volcano, in Geologicheskie i geofizicheskie issledovaniya v vulkanicheskikh oblastyakh (Geological and Geophysical Studies in Volcanic Areas), 1963, pp. 70–74.

    Google Scholar 

  • Fan, Q., Sui, J.L., Wang, T.H., et al., History of volcanic activity, magma evolution and eruptive mechanisms of the Changbai volcanic province, Geol. J. China Univ., 2007, no. 13, pp. 175–190.

    Google Scholar 

  • Fedorchuk, A.V. and Filatova, N.I., Cenozoic magmatism of North Korea and geodynamic settings of its formation, Petrology, 1993, vol. 1, no. 6, pp. 645–656.

    Google Scholar 

  • Fenn, P.M., The nucleation and growth of alkali feldspars from hydrous melts, Can. Mineral., 1977, vol. 15, pp. 133–161.

    Google Scholar 

  • Filatova, N.I. Cenozoic extension structures in the continental framework of the Japan Sea, Geotectonics, 2004, vol. 38, no. 6, pp. 459–477.

    Google Scholar 

  • Filatova, N.I. and Fedorov, P.I., Cenozoic magmatism in the Korean–Japanese region and its geodynamic setting, Geotectonics, 2003, vol. 37, no. 1, pp. 49–70.

    Google Scholar 

  • Francis, R.D., Sulfide globules in mid-ocean ridge basalts (MORB), and the effect of oxygen abundance in Fe–S–O liquids on the ability of those liquids to partition metals from MORB and komatiite magmas, Chem. Geol., 1990, vol. 85, pp. 199–213.

    Article  Google Scholar 

  • Gaillard, F. and Scaillet, B., The sulfur content of volcanic gases on Mars, Earth Planet. Sci. Lett., 2009, vol. 279, pp. 34–43.

    Article  Google Scholar 

  • Gaillard, F., Scaillet, B., and Arndt, N.T., Atmospheric oxygenation caused by a change in volcanic degassing pressure, Nature, 2011, vol. 478, pp. 229–233.

    Article  Google Scholar 

  • Geologiya Koreii (Geology of Korea), Pkhen’yan: Izd-vo knig inostrannykh yazykov, 1993.

  • Ghiorso, M.S. and Evans, B.W., Thermodynamics of rhombohedral oxide solid solutions and a revision of the Fe–Ti two oxide geotermometer and oxygen–barometer, Am. J. Sci., 2008, vol. 308, pp. 957–1039.

    Article  Google Scholar 

  • Horn, S. and Schmincke, H.-U., Volatile emission during the eruption of Baitoushan volcano (china/north Korea) ca. 969 AD, Bull. Volcanol., 2000, vol. 61, pp. 537–555.

    Article  Google Scholar 

  • Hsu, Ch.-N., Chen, J.-Ch., and Ho, K.-S., Geochemistry of Cenozoic volcanic rocks from Kirin province, northeast China, Geochem. J., 2000, vol. 34, pp. 33–58.

    Article  Google Scholar 

  • Jarrar, G., Wachendorf, H., and Saffarin, G., A late Proterozoic bimodal volcanic/subvolcanic suite from Wadi Araba, southwest Jardan, Precambrian Res., 1992, vol. 56, nos. 1–2, pp. 51–72.

    Article  Google Scholar 

  • Jayasuriya, K.D., O’Neill, H.St.C., Berry, A.J., and Campbell, S.J., A Mossbauer study of the oxidation state of Fe in silicate melts, Am. Mineral., 2004, vol. 89, pp. 1597–1609.

    Article  Google Scholar 

  • Jiang, N., Guo, J., and Chang, G., Nature and evolution of the lower crust in the eastern North China craton: a review, Earth Sci. Rev., 2013, vol. 122, pp. 1–9.

    Article  Google Scholar 

  • Jochum, K.P., Stoll, B., Herwig, K., et al., Mpi-ding reference glasses for in situ microanalysis: new reference values for element concentrations and isotope ratios, Geochem., Geophys., Geosyst., 2006, vol. 7, no. 2, pp. 1–44.

    Article  Google Scholar 

  • Kamenetsky, V.S., Zelenski, M., Gurenko, A., et al., Reprint of silicate–sulfide liquid immiscibility in modern arc basalt (Tolbachik volcano, Kamchatka): Part II. Composition, liquidus assemblage, and fractionation of the silicate melt, Chem. Geol., 2017, vol. 471, pp. 92–110.

    Google Scholar 

  • Klassifikatsiya magmaticheskikh (izverzhennykh) porod i slovar’ terminov (Classification of Magmatic (Igneous) Rocks), Moscow: Nedra, 1997.

  • Kogiso, T., Hirschmann, M.M., and Pertermann, M., High-pressure partial melting of mafic lithologies in the mantle, J. Petrol., 2004, vol. 45, no. 12, pp. 2407–2422.

    Article  Google Scholar 

  • Kovalenko, V.I., Petrologiya i geokhimiya redkometal’nykh granitoidov (Petrology and Geochemistry of Rare-Metal Granitoids), Novosibirsk: Nauka, 1977.

    Google Scholar 

  • Kovalenko, V.I., Kostitsyn, Yu.A., Yarmolyuk, V.V., et al., Magma sources and the isotopic (Sr and Nd) evolution of Li-F rare-metal granites, Petrology, 1999, vol. 7, no. 4, pp. 383–409.

    Google Scholar 

  • Kovalenko, V.I., Yarmolyuk, V.V., Kozlovsky, A.M., et al., Magmatic sources of alkaline granitoids and related rocks from intraplate magmatic associations in Central Asia, Dokl. Earth Sci., 2001, vol. 377A, no. 3, pp. 354–358.

    Google Scholar 

  • Kuritani, T., Kimura, J.I., Miyamoto, T., et al., Intraplate magmatism related to deceleration of upwelling astenospheric mantle: implications from the Changbaishan shield basalts, Northeast China, Lithos, 2009, vol. 112, pp. 247–258.

    Google Scholar 

  • Kuritani, T., Ohtani, E., and Kimura, J.I., Intensive hydration of the mantle transition zone beneath China caused by ancient slab stagnation, Nature Geosci., 2011, vol. 4, pp. 713–716.

    Article  Google Scholar 

  • Liu, R., Fan, Q., Zheng, X., et al., The magma evolution of Tianchi volcano, Changbaishan, Sci. China (Ser. D), 1998, vol. 41, no. 4, pp. 382–389.

    Article  Google Scholar 

  • Liu, J., Chen, Sh.-Sh., Guo, Zh., et al., Geological background and geodynamic mechanism of Mt. Changbai volcanoes on the China-Korea border, Lithos, 2015, vol. 236–237, pp. 46–73.

    Google Scholar 

  • Macdonald, R., The role of fractional crystallization in the formation of alkaline rocks, in Alkaline Rocks, Sorenson, H., Eds., London: Wileys, 1974, pp. 442–458.

    Google Scholar 

  • Mironov, A.G., Al’mukhamedov, A.I., Geletii, V.F., et al., Eksperimental’nye issledovaniya geokhimii zolota s pomoshch’yu metoda radioaktivnykh indikatorov (Experimental Studies of Gold Geochemistry using Radioactive Indicators), Novosibirsk: Nauka, 1989.

    Google Scholar 

  • De Moor, J.M., Fisher, T.P., Sharp, Z.D., et al., Sulfur degassing at Erta Ale (Ethiopia) and Masaya (Nicaragua) volcanoes: implications for degassing processes and oxygen fugacities of basaltic systems, Geochem., Geophys., Geosystems, 2013, vol. 14, no. 10, pp. 4076–4108.

    Article  Google Scholar 

  • Morgan, G.B. and London, D., Optimizing the electron microprobe analysis of hydrous alkali aluminosilicate glasses, Am. Mineral., 1996, vol. 81, pp. 1176–1185.

    Article  Google Scholar 

  • Moussallam, Y., Oppenheimer, C., Scaillet, B., et al., Tracking the changing oxidation state of Erebus magmas, from mantle to surface, driven by magma ascent and degassing, Earth Planet. Sci. Lett., 2014, vol. 393, pp. 200–209.

    Article  Google Scholar 

  • Moussallam, Y., Edmonds, M., Scaillet, B., et al., The impact of degassing on the oxidation state of basaltic magmas: a case study of Kilauea Volcano, Earth Planet. Sci. Lett., 2016, vol. 450, pp. 317–325.

    Article  Google Scholar 

  • Naumov, V.B. and Fin’ko, V.I., Conditions of crystallization of phenocrysts of Cenozoic alkaline pumices of Primorye, Dokl. Akad. Nauk SSSR, Ser. Geol., 1976, no. 12, pp. 91–95.

    Google Scholar 

  • Ni, L., Metrich, N., and Fan, Q., Heating stage experimental study of melt inclusions in feldspars from three Holocene eruptions of Changbaishan Tianchi Volcano, Earthquake Res. China, 2008, vol. 22, no. 2, pp. 153–163.

    Google Scholar 

  • Nielsen, C.H. and Sigurdsson, H., Quantitative methods for electron microprobe analysis of sodium in natural and synthetic glasses, Am. Mineral., 1981, vol. 66, pp. 547–552.

    Google Scholar 

  • Oppenheimer, C., Wacker, L., Xu, J., et al., Multi-proxi dating the “millennium eruption” of Changbaishan to late 946 CE, Quaternary Sci. Res., 2017, vol. 158, pp. 164–171.

    Google Scholar 

  • Papale, P., Modeling of the solubility of a two-component H2O + CO2 fluid in silicate liquids, Am. Mineral., 1999, vol. 84, pp. 477–492.

    Article  Google Scholar 

  • Pearce, J.A., Trace element characteristics of lavas from destructive plate boundaries, in Andesites, Thorpe, R.S., New York: Wiley and Sons, 1982.

    Google Scholar 

  • Popov V.K., Sandimirova, G.P., and Velivetskaya, T.A., Strontium, neodymium, and oxygen isotopic variations in the alkali basalt–trachyte–pantellerite–comendite series of Paektusan Volcano, Dokl. Earth Sci., 2008,vol. 419, no. 1, pp. 329–334.

    Google Scholar 

  • Sakhno, V.G., Isotopic–geochemical characteristics and deep-seated sources of the alkali rocks of the Pektusan Volcano, Dokl. Earth Sci., 2007. T. 417. 1 4. S. 528–534.

    Google Scholar 

  • Sakhno, V.G., Noveishii i sovremennyi vulkanizm yuga Dal’nego Vostoka (pozdnepleistotsen-golotsenovyi etap (Youngest and Modern Volcanism of the southern Far East (Late Pleistocene–Holocene Stage), Vladivostok: Dal’nauka, 2008.

    Google Scholar 

  • Sobolev, A.V., Melt inclusions in minerals as a source of principle petrological information, Petrology, 1996, vol. 4, no. 3, pp. 228–239.

    Google Scholar 

  • Sobolev, A.V. and Nikogosyan, I.K., Petrology of magmatism of long-lived jets: Hawaiian islands (Pacific Ocean) and Reunion Island (Indian Ocean), Petrology, 1994, vol. 2, no. 2, pp. 131–168.

    Google Scholar 

  • Sobolev, A.V. and Batanova, V.G., Mantle lherzolites of the Troodos ophiolite complex, Cyprus: clinopyroxene geochemistry, Petrology, 1995, vol. 3, no. 5, pp. 487–495.

    Google Scholar 

  • Sun, S.-S. and McDonough, W.F., Chemical and isotopic systematics of oceanic basalts: implications for mantle composition and processes: magmatism in the ocean basins, in Magmatism in the Ocean Basins, Saunders, A.D., and Norry, M.J. Eds., Geol. Soc., 1989, vol. 42, pp. 313–345.

    Google Scholar 

  • Trua, T., Daniel, C., and Mazzuoli, R., Crustal control in the genesis of Plio-Quaternary bimodal magmatism of the Main Ethiopian Rift (MER): geochemical and isotopic (Sr, Nd, Pb) evidence, Chem. Geol., 1999, vol. 155, pp. 201–231.

    Article  Google Scholar 

  • Wang, K., Plank, T., Walker, J.D., et al., A mantle melting profile across the Basin and Range, SW USA, J. Geophys. Res., 2002, vol. 107, no. B1, pp. 5–21.

    Google Scholar 

  • Wei, H., Sparks, R.S.I., Liu, R., et al., Three active volcanoes in china and their hazards, J. Asia Earth Sci., 2003, vol. 21, pp. 515–526.

    Article  Google Scholar 

  • Wei, H., Wang, Y., Jin, J., et al., Timescale and evolution of the intracontinental Tianchi volcanic shield and ignimbrite-forming eruption, Changbaishan, Northeast China, Lithos, 2007, vol. 96, nos. 1–2, pp. 315–324.

    Google Scholar 

  • Yarmolyuk V.V., Kudryashova E.A., Kozlovsky, A.M., et al., Late Cenozoic Volcanic Province in Central and East Asia, Petrology, 2011, vol. 11, no. 4, pp. 327–347.

    Article  Google Scholar 

  • Zelenski, M., Kamenetsky, V.S., Mavrogenes, J.A., et al., Silicate-sulfide liquid immiscibility in modern arc basalt (Tolbachik Volcano, Kamchatka): Part I. occurrence and compositions of sulfide melts, Chem. Geol., 2017, vol. 478, pp. 102–111.

    Google Scholar 

  • Zhang, M., Guo, Zh., Cheng, Zh., et al., Late Cenozoic intraplate volcanism in Changbai volcanic field, on the border of China and North Korea: insight into deep subduction of the pacific slab and intraplate volcanism, JGS, 2015, vol. 172, pp. 648–663.

    Article  Google Scholar 

  • Zhao, D., Global tomographic images of mantle plumes and subducting slabs: insight into deep earth dynamics, Phys. Earth Planet. Inter., 2004, vol. 146, pp. 3–34.

    Article  Google Scholar 

  • Zhao, D., Yanada, T., Hasegawa, A., et al., Imaging the subducting slabs and mantle upwelling under the Japan Islands, Geophys. J. Int., 2012, vol. 190, pp. 816–828.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. A. Andreeva.

Additional information

Original Russian Text © O.A. Andreeva, V.V. Yarmolyuk, I.A. Andreeva, S.E. Borisovskiy, 2018, published in Petrologiya, 2018, Vol. 26, No. 5, pp. 535–566.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andreeva, O.A., Yarmolyuk, V.V., Andreeva, I.A. et al. Magmatic Evolution of Changbaishan Tianchi Volcano, China–North Korea: Evidence from Mineral-Hosted Melt and Fluid Inclusions. Petrology 26, 515–545 (2018). https://doi.org/10.1134/S0869591118050028

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591118050028

Keywords

Navigation