Skip to main content
Log in

Mutual interaction of redox pairs in silicate melts: V5+/V4+/V3+/V2+ tetrad and other equilibria

  • Published:
Petrology Aims and scope Submit manuscript

Abstract

Mutual interaction of redox pairs was evaluated using the concept of intrinsic oxygen fugacity in a melt. A “rose of \(f_{O_2 } \) trends” was proposed for the visualization of possible directions of mutual oxidation/reduction of redox pairs for a given melt composition. Missing thermodynamic data were estimated for vanadium redox pairs in sodium disilicate melt, and the V5+/V4+/V3+/V2+ tetrad was quantitatively described. The redistribution of vanadium in different valence states was estimated during quenching to glass of model iron-free and natural iron-bearing melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Ashton-Patton, M.M., Rapp, D.B., and Shelby, J.E., Effect of SnO additions on the decolourisation of amber glass, Phys. Chem. Glasses: Eur. J. Glass Sci. Technol., 2006, vol. 47, pp. 236–239.

    Google Scholar 

  • Avramov, I., Vassilev, Ts., and Penkov, I., The glass transition temperature of silicate and borate glasses, J. Non-Crystal. Solids, 2005, vol. 351, pp. 472–476.

    Article  Google Scholar 

  • Berry, A.J., Shelley, M.G., Foran, G.J., O’Neill, H.St.C., and Scott, D.R., A furnace design for XANES spectroscopy of silicate melts under controlled oxygen fugacities and temperatures to 1773 K, J. Synchr. Rad., 2003, vol. 10, pp. 332–336.

    Article  Google Scholar 

  • Borisov, A.A., Ferric-Ferrous ratio in liquid iron oxides: analysis and applications to natural basaltic melts, Petrology, 2010, vol. 18, no. 5, pp. 494–504.

    Article  Google Scholar 

  • Borisov, A.A., Kadik, A.A., Zharkova, E.A., and Kalinichenko, N.B., Influence of oxygen fugacity on the proportions between different states of vanadium valence in magmatic melts, Geokhimiya, 1986, no. 7, pp. 915–920.

    Google Scholar 

  • Brückner, R., Redox behavior in oxide melts and glasses, in Current Topics on Non-Crystalline Solids, Baro, M.D. and Clavaguera, N., Eds., World Scientific Pub. Inc., 1986, pp. 109–140.

    Google Scholar 

  • Farah, H., Optical basicity analysis of vanadium-bearing silicate glasses/melts, J. Am. Ceram. Soc., 2008, vol. 91, pp. 3915–3919.

    Article  Google Scholar 

  • Guo, X., Mauro, J.C., Potuzak, M., and Yue, Y., Structural relaxation in annealed hyperquenched basaltic glasses: insights from calorimetry, J. Non-Crystal. Solids, 2012, vol. 358, pp. 1356–1361.

    Article  Google Scholar 

  • Jayasuriya, K.D., O’Neill, H.St.C., Berry, A., and Campbell, S.J., A Mössbauer study of the oxidation state of Fe in silicate melts, Am. Mineral., 2004, vol. 89, pp. 1597–1609.

    Google Scholar 

  • Johnston, W.D., Oxidation-reduction equilibria in ironcontaining glass, J. Am. Ceram. Soc., 1964, vol. 47, pp. 198–201.

    Article  Google Scholar 

  • Johnston, W.D., Oxidation-reduction equilibria in molten Na2O · 2SiO2 glass, J. Am. Ceram. Soc., 1965, vol. 48, pp. 184–190.

    Article  Google Scholar 

  • Karner, J.M., Sutton, S.R., Papike, J.J., Shearer, C.K., Jones, J.H., and Newville, M., Application of a new vanadium valence oxybarometer to basaltic glasses from the Earth, Moon, and Mars, Am. Mineral., 2006, vol. 91, pp. 270–277.

    Article  Google Scholar 

  • Kilinc, A., Carmichael, I.S.E., Rivers, M.L., and Sack, R.O., The ferric-ferrous ratio of natural silicate liquids equilibrated in air, Contrib. Mineral. Petrol., 1983, vol. 83, pp. 136–140.

    Article  Google Scholar 

  • Knoche, R., Dingwell, D.B., Seifert, F.A., and Webb, S.L., Non-linear properties of supercooled liquids in the system Na2O-SiO2, Chem. Geol., 1994, vol. 116, pp. 1–16.

    Article  Google Scholar 

  • Kress, V.C. and Carmichael, I.S.E., Stoichiometry of the iron oxidation reaction in silicate melts, Am. Mineral., 1988, vol. 73, pp. 1267–1274.

    Google Scholar 

  • Lahiri, D., Mukherjee, B., and Majumdar, R.N., Mechanismus der Wechselwirkung zweier Redox-Oxide in Glas, Glastechnische Berichte, 1974, vol. 47, pp. 4–9.

    Google Scholar 

  • Leister, M., Ehrt, D., Gönna, G., Rüssel, C., and Breitbarth, F.-W., Redox states and coordination of vanadium in sodium silicates melted at high temperatures, Phys. Chem. Glasses, 1999, vol. 40, pp. 319–325.

    Google Scholar 

  • Moynihan, C.T., Structural relaxation and the glass transition, Rev. Mineral. Geochem., 1995, vol. 32, pp. 1–19.

    Google Scholar 

  • Müller-Simon, H., Electron exchange reactions between polyvalent elements in soda-lime-silica and sodium borate glasses, Glastechnische Berichte Glass Science and Technology, 1996, vol. 69, pp. 387–395.

    Google Scholar 

  • Pyare, R. and Nath, P., Free oxygen ion activity in binary alkali silicate glasses, J. Non-Crystal. Solids, 1991, vol. 128, pp. 154–161.

    Article  Google Scholar 

  • Richet, P. and Bottinga, Y., Rheology and configurational entropy of silicate melts, Rev. Mineral. Geochem., 1995, vol. 32, pp. 67–93.

    Google Scholar 

  • Rüssell, C., Redox reactions during cooling of glass melts—a theoretical consideration, Glastechnische Berichte, 1989, vol. 62, pp. 199–203.

    Google Scholar 

  • Sack, R.O., Carmichael, I.S.E., Rivers, M., and Ghiorso, N.S., Ferric-ferrous equilibria in natural silicate liquids at 1 bar, Contrib. Mineral. Petrol., 1980, vol. 75, pp. 369–376.

    Article  Google Scholar 

  • Schreiber, H.D., Mutual interactions of redox couples via electron exchange in silicate melts. Models for geochemical melt systems, J. Geophys. Res., 1987, vol. 89, pp. 9233–9245.

    Article  Google Scholar 

  • Schreiber, H.D. and Balazs, G.B., Vanadium as an oxygen geobarometer in basaltic magmas: the further development of a geochemical electromotive force series in silicate melts, Lunar Planet. Sci., 1982, vol. 13, pp. 692–693.

    Google Scholar 

  • Schreiber, H.D., Thanyasiri, T., Lach, J.J., and Legere, R.A., Redox equilibria of Ti, Cr, and Eu in silicate melts: reduction potentials and mutual interactions, Phys. Chem. Glasses, 1978, vol. 19, pp. 126–139.

    Google Scholar 

  • Schreiber, H.D., Balazs, G.B., Shaffer, A.P., and Jamison, P.L., Iron metal production in silicate melts through the direct reduction of Fe(II) by Ti(III), Cr(II), and Eu(II), Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 1891–1901.

    Article  Google Scholar 

  • Schreiber, H.D., Peters, L.J., Beckman, J.W., and Schreiber, C.W., Redox chemistry of iron-manganese and iron-chromium interactions in soda lime silicate glass melts, Glastechnische Berichte Glass Science and Technology, 1996, vol. 69, pp. 269–277.

    Google Scholar 

  • Sutton, S.R., Karner, J., Papike, J., Delaney, J.S., Shearer, C., Newville, M., Eng, P., Rivers, M., and Dyar, M.D., Vanadium K-edge XANES of synthetic and natural basaltic glasses and application to microscale oxygen barometry, Geochim. Cosmochim. Acta, 2005, vol. 69, pp. 2333–2348.

    Article  Google Scholar 

  • Vanýsek, P., Electrochemical Series. Handbook of Chemistry and Physics, Chemical Rubber Company, 2011.

    Google Scholar 

  • Yageman, V.D. and Matveev, G.M., Heat capacity of the SiO2-Na2O · 2SiO2 system, Fiz. Khim. Stekla, 1982, vol. 8, no. 2, pp. 238–245.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Borisov.

Additional information

Original Russian Text © A.A. Borisov, 2013, published in Petrologiya, 2013, Vol. 21, No. 4, pp. 339–349.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Borisov, A.A. Mutual interaction of redox pairs in silicate melts: V5+/V4+/V3+/V2+ tetrad and other equilibria. Petrology 21, 305–315 (2013). https://doi.org/10.1134/S0869591113040036

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0869591113040036

Keywords

Navigation