Skip to main content
Log in

New Evidence for the Deep Structure of the Dzhau-Tepe Mud Volcano

  • Published:
Journal of Volcanology and Seismology Aims and scope Submit manuscript

Abstract

This paper presents the results of areal seismic studies in the deep structure of the Dzhau Tepe mud volcano, which is the largest of its kind on the Kerch Peninsula. It is the first time that data has been obtained concerning nearly vertical fluid-conducting structures beneath the volcano that supply material onto the ground during more active periods. A new approach is proposed for interpretation of measured relative amplitudes of microseismic noise based on numerical simulation of plane-stratified media. The results derived in this study are compared with previous geological and geophysical data on the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Akhmetjanov, A., Akmanov, G., Krylov, O., Basov, E., Kozlova, E., and Stadnitskaya, A., Mud volcanoes of the Kerch peninsula. An overview, in Sedimentary Basins of the Mediterranean and Black Seas, Abstracts of the 4th Post-Cruise Meeting Training-through-Research programme, vol. 100 of MARINF. UNESCO, Paris, 1996, pp. 23–24.

  2. Beloborodov, D.E. and Tveritinova, T.Yu., Fissure structures on mud volcanoes and host rocks in the Kerch–Taman mud-volcanic region, Materialy shestoi molodezhnoi tektonofizicheskoi shkoly-seminara (Proc. 6th Tectonophysical School-Seminar for Young Scientists), Moscow: IFZ RAN, 2019, pp. 77–83.

    Google Scholar 

  3. Borisova, L.I., Ramskaya, N.E., and Khoryushina, Z.P., Otchet o rezultatakh neftegazopoiskovogo bureniya na Severo-Vulkanovskoi ploshchadi po sostoyaniyu na 1989 g. (A Report on the Results of Drilling for Oil and Gas in the Northern Vulkanovka Area as of 1989), Simferopol: Krymgeologiya, 1989.

  4. Bowden, D.C. and Tsai, V.C., Earthquake ground motion amplification for surface waves, Geophysical Research Letters, 2017, vol. 44, no. 1, pp. 121–127.

    Article  Google Scholar 

  5. Eddy, C.L. and Ekström, G., Local amplification of Rayleigh waves in the continental United States observed on the US Array, Earth and Planetary Science Letters, 2014, vol. 402, pp. 50–57.

    Article  Google Scholar 

  6. Yegorova, T.P., Baranova, E.P., Murovskaya, A.V., and Gobarenko, V.S. Crustal structure of the Crimean Mountains along the Sevastopol–Kerch profile from the results of DSS and local seismic tomography, Geotectonics, 2018, vol. 52, no. 4, pp. 468–484.

  7. Frantsuzova, V.I. and Danilov, K.B., The structure of the Lomonosov volcanic pipe in the Arkhangel’sk Diamond Province from anomalies of the microseismic field, J. Volcanol. Seismol., 2016, vol. 10, no. 5, pp. 339–359.

    Article  Google Scholar 

  8. Glinskii, B.M., Sobisevich, A.L., Fat’yanov, A.G., and Khairetdinov, M.S., Mathematical simulation and experimental studies of the Shugo mud volcano, J. Volcanol. Seismol., 2008, vol. 2, no. 5, pp. 364–374.

    Article  Google Scholar 

  9. Gorbatikov, A.V., Stepanova, M.Yu., and Korablev, G.E. Microseismic field affected by local geological heterogeneities and microseismic sounding of the medium, Izv., Phys. Solid Earth, 2008, vol. 44, no. 7, pp. 577–592.

  10. Gorbatikov, A.V., and Tsukanov, A.A. Simulation of the Rayleigh waves in the proximity of the scattering velocity heterogeneities. Exploring the capabilities of the microseismic sounding method, Izv., Phys. Solid Earth, 2011, vol. 47, no. 4, pp. 354–369.

  11. Kaevitser, V.I., Slovtsov, I.B., Krivtsov, A.P., Razma-nov, V.M., Smol’yaninov, I.V., and Elbakidze, A.V., Underwater mud volcanoes in the Taman Peninsula: Sonar surveys, J. Volcanol. Seismol., 2016, vol. 10, no. 4, pp. 242–247.

    Article  Google Scholar 

  12. Kanareikin, B.A., Maltsev, A.I., anmd Kharlamov, A.S., A study of the zone of mud volcanism in the Kerch Peninsula using seismic engineering techniques, Geologiya i Mineralno-Syryevye Resursy Sibiri, 2019, no. 1, pp. 35–46.

  13. Kholodov, V.N., Mud volcanoes: Distribution and Genesis, Geologiya i Poleznye Iskopaemye Mirovogo Okeana, 2012, no. 4, pp. 5–27.

  14. Kozhevnikov, V.M. and Solovei, O.A., A 3D model of the Central Asia mantle from dispersion of Rayleigh-wave phase velocities, J. Volcanol. Seismol., 2010, vol. 4, no. 4, pp. 248–256.

    Article  Google Scholar 

  15. Lavrushin, V.Yu., Underground fluids in the Greater Caucasus and its Circumference, Trudy GIN RAN, no. 599, Polyak, B.G., Editor-in-Chief, Moscow: GEOS, 2012. 348 c.

  16. Likhodeev, D.V., Dudarov, Z.I., Zhostkov, R.A., Pres-nov, D.A., Dolov, S.M., and Danilov, K.V., Studying the deep structure of Elbrus Volcano by microseismic sounding, J. Volcanol. Seismol., 2017, vol. 11, no. 6, pp. 413–418.

    Article  Google Scholar 

  17. Malovichko, A.A., Gabsatarova, I.P., Likhodeev, D.V., Zvereva, A.S., and Presnov, D.A. Development of multiscale seismic monitoring system in the Elbrus volcano region, Seism. Instrum., 2015, vol. 51, no. 3, pp. 259–266.

  18. Ovsyuchenko, A.N., Sobisevich, A.L., and Sysolin, A.I. On the relationship between recent tectonic processes and mud volcanism by the example of Mt. Karabetov, Taman Peninsula, Izv., Phys. Solid Earth, 2017, vol. 53, no. 4, pp. 606–617.

  19. Presnov, D.A., Sobisevich, A.L., and Shurup, A.S., Model of the geoacoustic tomography based on surface-type waves, Physics of Wave Phenomena, 2016, vol. 24, no. 3, pp. 249–254.

    Article  Google Scholar 

  20. Rogozhin, E.A., Ovsyuchenko, A.N., Lutikov, A.I., Sobisevich, A.L., Sobisevich, L.E., and Gorbatikov, A.V., Endogennye opasnosti Bol’shogo Kavkaza (The Endogenous Hazards in the Greater Caucasus), Moscow: IFZ RAN, 2014.

  21. Shnyukov, E.F., Sheremetiev, V.M., Maslakov, N.A., Kutnii, V.A., Gusakov, I.N., and Trofimov, V.V., Gryazevye vulkany Kerchensko-Tamanskogo regiona (Mud Volcanoes in the Kerch–Taman Region), Krasnodar: GlavMedia, 2006.

  22. Sobisevich, A.L., Sobisevich, L.E., and Tveritinova, T.Yu., On mud volcanism in the late Alpian folded edifice of the Northwest Caucasus: A study of deep structure for Shugo mud volcano, Geologiya i Poleznye Iskopaemye Mirovogo Okeana, 2014, no. 2, pp. 80–93.

  23. Sobisevich, A.L., Tveritinova, T.Yu., Likhodeev, D.V., Beloborodov, D.E., Dudarov, Z.I., Dolov, S.M., Presnov, D.A., and Puzich, I.N., The deep structure of the Dzhardzhava mud volcano within the South Kerch anticlinal feature, Voprosy Inzhenernoi Seismologii, 2015, vol. 42, no. 2, pp. 73–80.

    Google Scholar 

  24. Spungin, V.G. and Zykov, D.S., Microseismicity in local areas: The southeastern part of the Fennoscandian Shield, J. Volcanol. Seismol., 2018, vol. 12, no. 1, pp. 56–66.

    Article  Google Scholar 

  25. Titova, N.O., Nesterovsky, V.A., Deyak, M.A., and Stupina, L.V., The distribution of the clayey fraction in the mud breccia discharged by Dzhau Tepe Volcano in the Kerch Peninsula, Geologiya i Poleznye Iskoipaemye Mirovogo Okeana, 2013, no. 4, pp. 90–94.

  26. Tveritinova, T.Yu., Sobisevich, A.L., Sobisevich, L.E., and Likhodeev, D.V., The structural setting and peculiar features in the structure and formation of the mud volcano on Mt. Karabetov, Geologiya i Poleznye Iskopaemye Mirovogo Okeana, 2015, no. 2, pp. 106–122.

  27. Valyaev, B.M. and Demin, I.S., Degassing of the Earth and the nature of oil and gas accumulation (isotope geochemical and geodynamic aspects), Geologya i Poleznye Iskopaemye Mirovogo Okeana, 2015, no. 2, pp. 33–49.

  28. Yanovskaya, T.B., Poverkhnostno-volnovaya tomografiya v seismologicheskikh issledovaniyakh (Surface Wave Tomography in Seismological Research), St. Petersburg: Nauka, 2015.

  29. Yanovskaya, T.B. On the theory of the microseismic sounding method, Izv., Phys. Solid Earth, 2017, vol. 53, no. 6. pp. 819–824.

  30. Zhostkov, R.A., Presnov, D.A., and Sobisevich, A.L., The development of the microseismic sounding method, Vestnik KRAUNTs, Nauki o Zemle, 2015, no. 2, issue 26, pp. 11–19.

Download references

ACKNOWLEDGMENTS

We express our gratitude to Corresponding Member of the Russian Academy of Sciences A.L. Sobisevich and to Cand. Sci. (Geol.–Mineral.) T.Yu. Tveritinova (Moscow State University) for discussion of our geophysical experiment and valuable comment, as well as the anonymous reviewers whose remarks have helped to enhance the quality of the present paper.

Funding

This work was supported by the Russian Foundation for Basic Research, project nos. 14-05-90421 and 18-35-00541, and in the framework of the state assignment by the Institute of Physics of the Earth of the Russian Academy of Sciences

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. A. Presnov.

Additional information

Translated by A. Petrosyan

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Presnov, D.A., Zhostkov, R.A., Likhodeev, D.V. et al. New Evidence for the Deep Structure of the Dzhau-Tepe Mud Volcano. J. Volcanolog. Seismol. 14, 166–176 (2020). https://doi.org/10.1134/S0742046320030057

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0742046320030057

Keywords:

Navigation