Skip to main content
Log in

Role of mTOR in the regulation of skeletal muscle metabolism

  • Reviews
  • Published:
Human Physiology Aims and scope Submit manuscript

Abstract

The mTOR enzyme belongs to the specific serine/threonine protein kinase family and plays an important role in extracellular signal transduction by phosphorylating many substrates in various metabolic pathways of the human body. The mTOR protein possessing protein kinase activity is encoded by the FRAP1 gene, which is located on chromosome 1 (1p36.2). In skeletal muscles, mTOR occurs as a component of two protein complexes, mTORC1 and mTORC2, which differ in sensitivity to the inhibitory effect of rapamycin. To regulate metabolism in skeletal muscles, mTOR phosphorylates various protein metabolism enzymes, transcription factors, and translation factors. Expression of mTOR is triggered in response to changes in metabolic demand of the muscle cell and intensifies protein metabolism. Studies of the past years showed that mTOR plays an important role in regulating intracellular metabolism, acting primarily at initiation and synthesis of muscle proteins. The review considers the current data on the role of mTOR in regulating the physiological function in skeletal muscles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Magnuson, B., Ekim, B., and Fingar, D., Regulation and function of ribosomal protein s6 kinase (S6K) with mTOR signaling networks, Biochem. J., 2012, vol. 441,part 1, p. 1.

    Article  CAS  PubMed  Google Scholar 

  2. Efeyen, A. and Sabatini, D.M., mTOR and cancer: Many loops in one pathway, Curr. Opin. Cell Biol., 2010, vol. 22, no. 2, p. 169.

    Article  Google Scholar 

  3. Nader, C.A., Muscle growth learns new trick from an old dog, Nat. Med., 2007, vol. 13, no. 9, p. 1016.

    Article  CAS  PubMed  Google Scholar 

  4. Sancak, Y., Thoreen, C.C., Peterson, T.R., et al., PRAS40 is an insulin-regulated inhibitor of the mTORC1 protein kinase, Mol. Cell, 2007, vol. 25, no. 6, p. 903.

    Article  CAS  PubMed  Google Scholar 

  5. Vander Haar, E., Lee, S.I., Bandhakavi, S., et al., Insulin signaling to mTOR mediated by the Akt/PKB substrate PRAS40, Nat. Cell Biol., 2007, vol. 9, no. 3, p. 316.

    Article  Google Scholar 

  6. Wang, H., Zhang, Q., Wen, Q., et al., Proline-rich Akt substrate of 40 kDa (PRAS40): A novel downstream target of PI3K/Akt signaling pathway, Cell Signal, 2012, vol. 24, no. 1, p. 17.

    Article  CAS  PubMed  Google Scholar 

  7. Zoncu, R., Efeyan, A., and Sabatini, D.M., mTOR: From growth signal integration to cancer, diabetes and ageing, Nat. Rev. Mol. Cell Biol., 2011, vol. 12, no. 1, p. 21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  8. Sarbassov, D.D., Guertin, D.A., Ali, S., et al., Phosphorylation and regulation of Akt/PKB by the rictor-mTOR complex, Science, 2005, vol. 307, no. 5751, p. 1098.

    Article  CAS  PubMed  Google Scholar 

  9. Demirkan, G., Yu, K., Boylan, J.M., et al., Phosphoproteomic profiling of in vivo signaling in liver by the mammalian target of rapamycin complex 1 (mTORC1), PLoS One, 2011, vol. 6, no. 6, p. e21729.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Hsu, P.P., Kang, S.A., Ramesender, J., et al., The mTOR-regulated phosphoproteome reveals a mechanism of mTORC1-mediated inhibition of growth factor signaling, Science, 2011, vol. 332, no. 6034, p. 1317.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Laplante, M. and Sabatini, D.M., mTOR signaling in growth control and disease, Cell, 2012, vol. 149, no. 2, p. 274.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Johnson, S., Rabinovitch, P., and Kaeberlein, M., mTOR is a key modulator of ageing and age-related disease, Nature, 2013, vol. 493, no. 7432, p. 338.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Sengupta, S., Peterson, T.R., and Sabatini, D.M., Regulation of the mTOR complex 1 pathway by nutrients, growth factors, and stress, Mol. Cell, 2010, vol. 40, no. 2, p. 310.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Huang, J. and Manning, B.D., The TSC1-TSC2 complex: A molecular switchboard controlling cell growth, Biochem. J., 2008, vol. 412, p. 179.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Soliman, G.A., Acosta-Jaquez, H.A., Dunlop, E.A., et al., Mtor Ser2481 autophosphorylation monitors mTORC-specific catalytic activity and clarifies rapamycin mechanism of action, J. Biol. Chem., 2010, vol. 285, no. 11, p. 7866.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Ekim, B., Magnuson, B., Acosta-Jaquez, H.A., et al., mTOR kinase domain phosphorylation promotes mTORC1 signaling, cell growth and cell cycle progression, Mol. Cell Biol., 2011, vol. 31, no. 14, p. 2787.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Foster, K.G., Acosta-Jaquez, H.A., and Romeo, Y., Regulation of mTOR complex 1 (mTORC1) by raptor Ser863 and multisite phosphorylation, J. Biol. Chem., 2010, vol. 285, no. 1, p. 80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Carriere, A., Romeo, Y., Acosta-Jaquez, H.A., et al., ERK1/2 phosphorylate raptor to promote Ras-dependent activation of mTOR complex1 (mTORC1), J. Biol. Chem., 2011, vol. 286, no. 1, p. 567.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Goodman, C.A., Miu, M.H., Frey, J.W., et al., A phosphatidylinositol 3-kinase/protein kinase B-independent activation of mammalian target of rapamycin signaling is sufficient to induce skeletal muscle hypertrophy, Mol. Biol. Cell, 2010, vol. 21, no. 19, p. 3258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Sun, Y., Fang, Y., Yoon, M.S., et al., Phospholipase D1 is an effector of Rheb in the mTOR pathway, Proc. Natl. Acad. Sci. USA, 2008, vol. 105, no. 24, p. 8286.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Toschi, A., Lee, E., Xu, L., et al. Regulation of mTORC1 and mTORC2 complex assembly by phosphatidic acid: Competition with rapamycin, Mol. Cell. Biol., 2009, vol. 29, no. 6, p. 1411.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Winter, J.N., Fox, T.E., Kester, M., et al., Phosphatidic acid mediates of mTORC1 through the ERK signaling pathway, Am. J. Physiol. Cell Physiol., 2010, vol. 299, no. 2, p. 335.

    Article  Google Scholar 

  23. Yoon, M.S., Sun, Y., Arauz, E., et al., Phosphatidic acid activates mammalian target of rapamycin complex 1 (mTORC1) kinase by displacing FK506 binding protein 38 (FKBP38) and exerting an allosteric effect, J. Biol. Chem., 2011, vol. 286, no. 34, p. 29 568.

    Article  CAS  Google Scholar 

  24. Kim, E. and Guan, K.L., Rac GTPases in nutrientmediated TOR signaling pathway, Cell Cycle, 2009, vol. 8, no. 7, p. 1014.

    Article  CAS  PubMed  Google Scholar 

  25. Kim, E., Goraksha-Hicks, P., Neufeld, T.P., et al., Regulation of TORC1 by Rag GTPases in nutrient response, Nat. Cell Biol, 2008, vol. 10, no. 8, p. 935.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  26. Sancak, Y., Peterson, T.R., Shaul, Y.D., et al., The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1, Science, 2008, vol. 320, no. 5907, p. 1496.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Sancak, Y., Bar-Peled, L., Zoncu, R., et al., Ragulator-Rag complex targets mTORC1 to the lysosomal surface and is necessary for its activation by amino acids, Cell, 2010, vol. 141, no. 2, p. 290.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  28. Dodd, K.M. and Tee, A.R., Leucine and mTORC1-A complex relationship, Physiol. Endocrinol. Metab., 2012, vol. 302, no. 11, p. 1329.

    Article  Google Scholar 

  29. Kume, K., Iizumi, Y., Shimada, M., et al., Role of N-end rule ubiquitin ligases UBP1 and UBP2 in regulating the leucine-mTOR signaling pathway, Genes. Cells, 2010, vol. 15, no. 4, p. 339.

    Article  CAS  PubMed  Google Scholar 

  30. Tasaki, T., Mulder, L.C., Iwamatsu, A., et al., Family of mammalian E3 ubiquitin ligases that contain the UBR box motif and recognize N-degrons, Mol. Cell Biol., 2005, vol. 25, no. 16, p. 7120.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Schieke, S.M., Phillips, D., and McCay, J., The mammalian target of rapamycin (mTOR) pathway regulates mitochondrial oxygen consumption and oxidative capacity, J. Biol. Chem., 2006, vol. 281, no. 37, p. 27643.

    Article  CAS  PubMed  Google Scholar 

  32. Cunningham, J.T., Rodges, J.T., Arlow, D.H., et al., mTOR controls mitochondrial oxidative function through a YY1-PGC-1a transcriptional complex, Nature, 2007, vol. 450, no. 7170, p. 736.

    Article  CAS  PubMed  Google Scholar 

  33. Hornberger, T.A., Stuppard, R., Conley, K.E., et al., Mechanical stimuli regulate rapamycin-sensitive signaling by a phosphoinositide 3-kinase-, protein kinase B- and growth factor-independent mechanism, Biochem. J., 2004, vol. 380,Pt. 3, p. 795.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Horenberger, T.A., Mechanotransduction are the regulation of mTORC1 signaling in skeletal muscle, Int. J. Biochem. Cell Biol., 2011, vol. 43, no. 8, p. 1267.

    Article  Google Scholar 

  35. Hornberger, T.A., Chu, W.K., Mak, Y.W., et al., The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling, Proc. Natl. Acad. Sci. USA, 2006, vol. 103, no. 12, p. 4741.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. O’Neil, T.K., Duffy, L.R., Frey, J.W., et al., The role of phosphoinositide 3-kinase and phosphatidic acid in the regulation of mammalian target of rapamycin following eccentric contractions, J. Physiol., 2009, vol. 587, no. 2, p. 347.

    Google Scholar 

  37. You, J.S., Frey, J.W., and Hornberger, T.A., Mechanical stimulation induces mTOR signaling via an ERK-independent mechanism: Implications for a direct activation of mTOR by phosphatidic acid, PLoS ONE, 2012, vol. 7, p. e47258.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Deldieque, L., Atherton, P., Patel, R., et al., Decrease in Akt/PKB signaling in human skeletal muscle by resistance exercise, Eur. J. Appl. Physiol., 2008, vol. 104, no. 1, p. 57.

    Article  Google Scholar 

  39. MacKenzie, M.G., Hamilton, D.L., Murray, J.T., et al., mVps34 is activated following high-resistance contractions, J. Physiol., 2009, vol. 587, no. 1, p. 253.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Bending, G., Grimmler, M., Huttner, I.G., et al., Integrin-linked kinase, a novel component of the cardiac mechanical stretch sensor, controls contractility in the zebrafish heart, Gene Dev., 2006, vol. 20, no. 17, p. 2361.

    Article  Google Scholar 

  41. De Acetus, M., Notte, A., Accorero, F., et al., Cardiac overexpression of melusin protects from dilated cardiomyopathy due to long-standing pressure overload, Circ. Res., 2005, vol. 96, no. 10, p. 1087.

    Article  Google Scholar 

  42. Knoll, R. and Marston, S., On mechanosensation actomyosin interaction and hypertrophy, Trends Cardiovasc. Med., 2012, vol. 22, no. 1, p. 17.

    Article  CAS  PubMed  Google Scholar 

  43. Glass, D.J., PI3 kinase regulation of skeletal muscle hypertrophy and atrophy, Curr. Top. Microbiol. Immunol., 2010, vol. 346, no. 2, p. 267.

    CAS  PubMed  Google Scholar 

  44. Yamada, A.K., Verienga, R., and Bueno Junior, C.R., Mechanotransduction pathways in skeletal muscle hypertrophy, J. Recept. Signal. Transduct. Res., 2012, vol. 32, no. 1, p. 42.

    Article  CAS  PubMed  Google Scholar 

  45. Philp, A., Hamilton, L., and Baar, K., Signaling mediating skeletal muscle remodeling by resistance exercise: PI3-kinase independent activation of mTORC1, J. Appl. Physiol., 2011, vol. 110, no. 2, p. 561.

    Article  CAS  PubMed  Google Scholar 

  46. Kravchenko, I.V., Furalyov, V.O., and Popov, V.O., Stimulation of mechanogrowth factor expression by myofibrillar proteins in murine myoblasts and myotubes, Mol. Cell Biochem., 2012, vol. 363, nos. 1–2, p. 347.

    Article  CAS  PubMed  Google Scholar 

  47. Deldieque, L., Atherton, P., Patel, R., et al., Decrease in Akt/PKB signaling in human skeletal muscle by resistance exercise, Eur. J. Appl. Physiol., 2008, vol. 108, no. 1, p. 57.

    Article  Google Scholar 

  48. Fluck, M. and Hoppeler, H., Molecular basis of skeletal muscle plasticity—from gene to form and function, Rev. Physiol. Biochem. Pharmacol., 2003, vol. 146, p. 159.

    Article  CAS  PubMed  Google Scholar 

  49. Yang, Y., Creer, A., Jemiolo, B., et al., Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle, J. Appl. Physiol., 2005, vol. 98, no. 5, p. 1745.

    Article  CAS  PubMed  Google Scholar 

  50. Baar, K., Nader, G., and Bodine, S., Resistance exercise, muscle loading/unloading and the control of muscle mass, Essays Biochem., 2006, vol. 42, no. 1, p. 61.

    Article  CAS  PubMed  Google Scholar 

  51. Stepto, N.K., Coffey, V.G., Carey, A.L., et al., Global gene expression in skeletal muscle from well-trained strength and endurance athletes, Med. Sci. Sports Exerc., 2009, vol. 41, no. 3, p. 546.

    Article  CAS  PubMed  Google Scholar 

  52. Coffey, V.G., Shield, A., Canny, B.J., et al., Interaction of contractile activity and training history on mRNA abundance in skeletal muscle from trained athletes, Am. J. Physiol. Endocrinol. Metab., 2006, vol. 290, no. 4, p. 849.

    Article  Google Scholar 

  53. Dreyer, H.C., Fujita, S., Cadenas, J.G., et al., Resistance exercise increases ANPK activity and reduces 4E-BP1 phosphorylation and protein syntheses in human skeletal muscle, J. Physiol., 2006, vol. 576, no. 2, p. 613.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Leger, B., Cartoni, R., Praz, M., et al., Akt signaling through GSK-3 β, mTOR and FOXO1 is involved in human skeletal muscle hypertrophy and atrophy, J. Physiol., 2006, vol. 576, no. 3, p. 923.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  55. Wilkilson, S.B., Phillips, S.M., Atherton, P.J., et al., Differential effects of resistance and endurance exercise in the fed state on signaling molecule phosphorylation and protein synthesis in human muscle, J. Physiol., 2008, vol. 586, no. 15, p. 3701.

    Article  Google Scholar 

  56. Coffey, V.G. and Hawley, J.A., The molecular bases of training adaptation, Sports Med., 2007, vol. 37, no. 9, p. 737.

    Article  PubMed  Google Scholar 

  57. Terzis, G., Georgiadis, G., Stratakos, G., et al., Resistance exercise-induced increase in muscle mass correlates with p70S6 kinase phosphorylation in human subjects, Eur. J. Appl. Physiol., 2008, vol. 102, no. 2, p. 145.

    Article  CAS  PubMed  Google Scholar 

  58. Churchley, E.G., Coffey, V.G., Pederson, D.J., et al., Influence of preexercise muscle glycogen content on transcriptional activity of metabolic and myogenic genes in well-trained humans, J. Appl. Physiol., 2007, vol. 102, no. 5, p. 1604.

    CAS  PubMed  Google Scholar 

  59. Moore, D.A., Tang, J.E., Burd, N.A., et al., Differential stimulation of myofibrilar and sarcoplasmic protein synthesis with protein ingestion at rest and after resistance exercise, J. Physiol., 2009, vol. 587, no. 4, p. 897.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. D. Golberg.

Additional information

Original Russian Text © N.D. Golberg, A.M. Druzhevskaya, V.A. Rogozkin, I.I. Ahmetov, 2014, published in Fiziologiya Cheloveka, 2014, Vol. 40, No. 5, pp. 123–132.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Golberg, N.D., Druzhevskaya, A.M., Rogozkin, V.A. et al. Role of mTOR in the regulation of skeletal muscle metabolism. Hum Physiol 40, 580–588 (2014). https://doi.org/10.1134/S0362119714040070

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0362119714040070

Keywords

Navigation