Skip to main content
Log in

Assessment of Influences of Anthropogenic and Climatic Changes in the Drainage Basin on Hydrological Processes in the Gulf of Ob

  • THE CURRENT STATE AND THE PROSPECTS OF RIVER MOUTH HYDROLOGY: TO THE 90TH ANNIVERSARY OF V. N. MIKHAILOV
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

Changes in the runoff of rivers flowing into the Arctic Ocean caused by climate changes and increasing anthropogenic load lead to foreseeable transformations of hydrological processes in the mouth areas of the rivers. Climatic, water-balance, and hydrodynamic models were successively applied to evaluate the effect of climatic and anthropogenic changes in the drainage basin of the Ob river estuary on seasonal hydrological processes in the Gulf of Ob. Climate changes along with considerable seasonal redistribution of river runoff in the drainage basin of the Gulf of Ob, mostly due to its increase in winter, were found to cause no significant changes in the seasonal hydrological mouth processes in 1980–2018. Estimates for a period of up to 2050 showed that climate changes under various scenarios will cause an increase in streamflow from the basin, which will reduce the penetration of saltwater into the gulf.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig.7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Agafonova, S.A., Ice regime of rivers of West Siberian arctic zone under current climate conditions, Arktika Antarkt., 2017, no. 2, pp. 25–33. https://doi.org/10.7256/2453-8922.2017.2.22649

  2. Arkhipov B.V., Alabyan A.M., Dmitrieva A.A., et al., Simulation of the effect of a sea canal to Sabetta port on the hydrodynamic regime and salinity of the Gulf of Ob, GeoRisk, vol. XII, no. 1., 2018, pp. 46–58.

    Google Scholar 

  3. Vvedenskii, A.R., Dianskii, N.A., Kabatchenko, I.M., Litvinenko, G.I., Reznikov, M.V., and Fomin, V.V., Calculation and analysis of the anticipated effect of a hydroengineering structure on the environmental conditions and bed topography of the water area at the construction of the approach canal to the Sabetta Port, Vestn. MGSU, 2017, vol. 12, no. 104, pp. 480–489. https://doi.org/10.22227/1997-0935.2017.5.480-489

    Article  Google Scholar 

  4. Voinov G.N., Nalimov Yu.V., Piskun A.A., et al., Osnovnye cherty gidrologicheskogo rezhima Obskoi i Tazovskoi gub (led, urovni, struktura vody) (Main Features of the Hydrological Regime of the Gulfs of Ob and Taz (Ice, Levels, Water Structure)), Voinov, G.N., Ed., SPb, 2017.

  5. Volkova, D.D., Tret’yakov, M.V., and Shiklomanov, A.I., The use of WBM model to assess river runoff from the drainage basin of the Ob–Taz mouth area, Tez. dokl. Mezhdunarod. nauch. konf. studentov, aspirantov i molodykh uchenykh “Lomonosov-2020” (Abstracts of Papers, Intern. Sci. Conf. of Students, Post-graduates, and Young Scientists Lomonosov-2020), Sevastopol’: MSU Branch, 2020, pp. 31–32.

  6. Dianskii, N.A., Fomin, V.V., Gruzinov, V.M., et al., Assessing the effect of the approach channel to Sabetta port on changes in the hydrological conditions of the Gulf of Ob with the use of numerical simulation, Arktika: Ekol. Ekon., 2015, no. 3, vol. 19, pp. 18–29.

    Google Scholar 

  7. Dumanskaya, I.O., Long-term forecast of ice characteristics of seas in European Russia and their changes at the turn of the 20th–21th centuries, Tr. Gidromettsentra Rossii (Proc. Hydrometcenter of Russia), 2013, no. 350, pp. 110–141.

  8. Dyusebaeva, Z., Vliyanie antropogennykh faktorov na izmenenie stoka reki Irtysh (Effect of Anthropogenic Factors on Runoff Variations in the Irtysh R.), Moscow: LAP LAMBERT Acad. Publ., 2012, ISBN 9783659283116.

  9. Ivanova, A.A., Flows and mass transport in Ob mouth nearshore, Integrated studies and surveys of ice and hydrometeorological phenomena and processes on the Arctic shelf, Tr. AANII, 2004, vol. 449, SPb.: Gidrometeoizdat, 2004, pp. 327–330.

  10. Kalinin, G.P. and Milyukov, P.I., Approximate calculation of transient flow of water masses, Tr. TsIP, no. 66. 1958.

  11. Mikhailov, V.N., Gidrologicheskie protsessy v ust’yakh rek (Hydrological Processes at River Mouths), Moscow: GEOS, 1997.

  12. Nalimov, Yu.V., Usankina, G.E., and Balabaev, A.P., Ice-hydrological regime in gulfs and bays of the Kara Sea shelf. Integrated studies and surveys of ice and hydrometeorological phenomena and processes on the Arctic shelf, Tr. AANII, 2004, vol. 449. SPb.: Gidrometeoizdat, 2004, pp. 299–306.

  13. Nalimov, Yu.V., Usankina, G.E., and Balabaev, A.P., Characteristics of the process of clearing of ice in Kara Sea estuaries. Integrated studies and surveys of ice and hydrometeorological phenomena and processes on the Arctic ShLelf, Tr. AANII, 2004, vol. 449, SPb.: Gidrometeoizdat, 2004, pp. 290–298.

  14. Svid. gos. registratsii programmy dlya EVM № 2020611779. Rossiiskaya Federatsiya. Model’ transformatsii rechnogo stoka. № 2 020 610 177 (Cert. State Registration of Computer Program no. 2 020 611 779. Russian Federation. Model of River Runoff Transformation no. 2020610177). Application. Jan. 13, 2020. Feb. 10, 2020. M.V. Tret’yakov.

  15. Sokolovskii, D.L., Shiklomanov, I.A., Calculation of flood hydrographs with the use of electronic simulating devices, Tr. LGMI, 1965, iss. 23, pp. 65–79.

  16. Strategiya sotsial’no-ekonomicheskogo razvitiya Yamalo-Nenetskogo avtonomnogo okruga na period do 2035 goda. Utv. Postanovleniem Zakonodatel’nogo sobraniya Yamalo-Nenetskogo AO 24 iyunya 2021 g. № 478 (Strategy of the Social-Economic Development of the Yamal-Nenets Autonomous District for Period up to 2035. Approved by Decree of the Legislative Assembly of Yamal-Nenets Autonomous District, June 24, 2021. No. 478).

  17. Tret’yakov M.V., On the simulation of hydrological processes in estuaries with ice cover, Probl. Arkt. Antarkt., 2008, no. 2, vol. 79, pp. 67–74.

    Google Scholar 

  18. Tret’yakov M.V. and Ivanov V.V., The state and development problems of technologies for estimation and forecasts of seawater intrusion into the mouth areas of Arctic rivers under runoff regulation and climate changes, Tr. GOIN, iss. 214, 2013, pp. 200–212.

  19. Tret’yakov M.V., Rumyantseva E.V., Bryzgalo V.A., et al., Space and time variations of the hydrochemical characteristics of water environment in the gulfs of Ob and Taz, Arktika: Ekol. Ekon., 2022, vol. 12, no. 1, pp. 4–55. https://doi.org/10.25283/2223-4594-2022-1-44-55

    Article  Google Scholar 

  20. Chantsev, V.Yu. and Dan’shina, A.V., Calculation of annual dynamics of the hydrophysical regime of the Gulf of Ob with a high spatial resolution, Fundam. Priklad. Gidrofiz., 2019, vol. 12, no. 3, pp. 55–64.

    Google Scholar 

  21. Baryshnikov, G. and Novoselov, D., Problems of transboundary rivers of Asian border zone of Russia, Pskov Region Studies J., 2019, no. 2, vol. 38, pp. 78–85.

    Article  Google Scholar 

  22. Blumberg, A.F. and Mellor, G.L., A description of a three-dimensional coastal ocean circulation model, in Three-Dimensional Coastal Ocean Models, Heaps, N., Ed., Washington, D.C.: Am. Geophys. Union, 1987.

    Book  Google Scholar 

  23. Cai, L., Alexeev, V.A., Arp, C.D., Jones, B.M., Liljedahl, A.K., and Gadeke, A., The polar WRF downscaled historical and projected twenty-first century climate for the coast and foothills of Arctic Alaska Front, Earth Sci., 2018, no. 5, pp. 1–15.

  24. Grogan, D.S., Wisser, D., Prusevich, A., Lammers, R.B., and Frolking, S., The use and re-use of unsustainable groundwater for irrigation, A global budget. Environ. Res. Lett., 2017, no. 12, vol. 3, pp. 34–51.

    Google Scholar 

  25. Grogan, D.S., Zhang, F., Prusevich, A., Lammers, R.B., Wisser, D., Glidden, S., Li, C., and Frolking, S., Quantifying the link between crop production and mined groundwater irrigation in China, Sci. Total Environ., 2015, no. 511, pp. 161–175.

  26. Hines, K.D., Bromwich, L., Ba, L., Barlage, M.J., and Slater, A.G., Development and testing of polar WRF.art III. Arctic land, J. Climate, 2011, no. 24, pp. 26–48. https://doi.org/10.1175/2010JCLI3460.1

  27. Holmes, R.M., Shiklomanov, A.I., Suslova, A., Tretiakov, M., McClelland, J.W., Scott, L., Spencer, R.G.M., and Tank, S.E., River discharge in “State of the Climate in 2020.” Chapter 5. “Arctic,” Bull. Amer. Meteor. Soc., 2021, no. 102, vol. 8, pp. S290–S293. https://doi.org/10.1175/2021BAMSStateoftheClimate.1

  28. Huss, M. and Hock, R., A new model for global glacier change and sea-level rise, Frontiers Earth Sci., 2015, vol. 3, no. 54, pp. 54–72. https://doi.org/10.3389/feart.2015.00054

    Article  Google Scholar 

  29. Kalnay, E., Kanamitsu, M., Kistler, R. et al., The NCEP/NCAR 40-year reanalysis project, Bull. Am. Meteorol. Soc. 1996, vol. 77, no. 3, pp. 437–471.

    Article  Google Scholar 

  30. Lammers, R.B., Pundsack, J.W., and Shiklomanov, A.I.. Variability in river temperature, discharge, and energy flux from the Russian pan-Arctic landmass, J. Geophys. Res. Biogeosci., 2007, no. 112, pp. 1–15. G04S59. https://doi.org/10.1029/2006JG000370

  31. Motovilov, Y.G., Gottschalk, L., Engeland, K., and Rodhe, A., Validation of a distributed hydrological model against spatial observations, Agric. For. Meteorol., 1999, no. 98, pp. 257–277.

  32. Powers, J.G., Klemp, J.B., Skamarock, W.C., Davis, C.A., Dudhia, J., Gil, D.O. et al., The weather research and forecasting model: overview, system efforts, and future directions, Bull. Amer. Meteorol. Soc., 2017, no. 98, pp. 1717–1737. https://doi.org/10.1175/BAMS-D-15-00308.1

  33. Rawlins, M.A., Increasing freshwater and dissolved organic carbon flows to Northwest Alaska’s Elson lagoon, Environ. Rese. Lett., 2021, no. 16, pp. 105014. https://doi.org/10.1088/1748-9326/ac2288

  34. Romanovsky, V. et al., Changing permafrost and its impacts, Snow, Water, Ice and Permafrost in the Arctic (SWIPA). Arctic Monitoring and Assessment Programme, 2017, pp. 65–102.

    Google Scholar 

  35. Rounce, D.R., Hock, R., and Shean, D.E., Glacier mass change in High Mountain Asia through 2100 using the Open-Source Python Glacier Evolution Model (PyGEM), Front. Earth Sci., 2020, vol. 7, no. 331, pp. 331–351. https://doi.org/10.3389/feart.2019.00331

    Article  Google Scholar 

  36. Saito, K., Walsh, J., Bring, A., Brown, R., Shiklomanov, A., and Yang, D., Future trajectory of Arctic System evolution, Arctic Hydrology, Permafrost and Ecosystems, Cham: Springer Nature, 2021, pp. 893–914. https://doi.org/10.1007/978-3-030-50930-9_30

    Book  Google Scholar 

  37. Serreze Mark, C., Hurst Ciaran, M., Representation of mean arctic precipitation from NCEP–NCAR and ERA Reanalyses, J. Climate, 2000, no. 13, vol. 1, pp. 182–201. https://doi.org/10.1175/1520-0442(2000)013<0182:romapf>2.0.co;2

    Article  Google Scholar 

  38. Shiklomanov, A.I. and Lammers, R.B., River ice responses to a warming Arctic—recent evidence from Russian rivers, Environ. Res. Lett., 2014, vol. 9, pp. 035008. https://doi.org/10.1088/1748-9326/9/3/035008

    Article  Google Scholar 

  39. Shiklomanov, A.I., Déry, S.J., Tretiakov, M.V., Yang, D., Magritsky, D., Georgiadi, A., and Tang, W., River freshwater flux to the Arctic Ocean, in Arctic Hydrology, Permafrost and Ecosystem, Dordrecht: Springer, 2021, pp. 703–738. https://doi.org/10.1007/978-3-030-50930-9

    Book  Google Scholar 

  40. Shiklomanov, A.I., Lammers, R.B., Lettenmaier, D., Polischuk, Yu., Savichev, O., Smith, L.C., and Chernokulsky, A.V., Hydrological changes: historical analysis, contemporary status and future projections, Regional Environmental Changes in Siberia and Their Global Consequences, Chapter 4, Dordrecht: Springer, 2013, pp. 111–155.

    Google Scholar 

  41. Skamarock, W.C., Klemp, J.B., Dudhia, J., Gill, D.O., Barker, D.M., Duda, M.G., Huang, X.-Y., Wang, W., and Powers, J.G., A Description of the Advanced Research WRF, Version 3, NCAR Technical Note 475, 2008.

  42. Smith, S.L., Romanovsky, V.E., Isaksen, K., Nyland, K.E., Kholodov, A.L., Shiklomanov, N.I., Streletskiy, D.A., Farquharson, L.M., Drozdov, D.S., Malkova, G.V., and Christiansen, H.H., Permafrost, in State of the Climate in 2020, Chapter 5, Arctic, Bull. Amer. Meteor. Soc., 2021, no. 102 (8), S293–S297. https://doi.org/10.1175/2021BAMSStateoftheClimate

  43. Smith, L.C., Pavelsky, T.M., MacDonald, G.M., Shiklomanov, A.I., and Lammers, R.B. Rising minimum flows in northern Eurasian rivers suggest a growing influence of groundwater in the high-latitude water cycle, J. Geophys. Res., 2007, vol. 112, G04–S47. https://doi.org/10.1029/2006JG000327

    Article  Google Scholar 

  44. Smith, L.C., Sheng, Y., MacDonald, G.M., and Hinzman, L.D., Disappearing Arctic lakes, Sci. 2005, vol. 308, iss. 5727, p. 1429.

    Article  Google Scholar 

  45. Stewart, R.J., Wollheim, W.M., Miara, A., Vörösmarty, C.J., Fekete, B., Lammers, R.B., and Rosenzweig, B., Horizontal cooling towers: riverine ecosystem services and the fate of thermoelectric heat in the contemporary northeast U.S., Environ. Res. Lett., 2013, no. 8 : 025010, pp. 25–35. https://doi.org/10.1088/1748-9326/8/2/025010

  46. Tananaev, N.I., Makarieva, O.M., and Lebedeva, L.S., Trends in annual and extreme flows in the Lena River Basin, Northern Eurasia Geophys. Res. Lett., 2016, no. 43, pp. 764–775.

  47. Taylor, K.E., Stouffer, J.R., and Meehl, G.A., An overview of CMIP5 and experiment design, Bull. Am. Meteorol. Society, 2012, vol. 93, iss. 4, pp. 485–498.

    Article  Google Scholar 

  48. URL: https://neespi.sr.unh.edu/

  49. Vinogradov, Yu.B., Semenova, O.M., and Vinogradova, T.A., An approach to the scaling problem in hydrological modelling: the deterministic modelling hydrological system, Hydrol. Processes, 2011, no. 25, pp. 1055–1073. https://doi.org/10.1002/hyp.7901

  50. Wisser, D., Fekete, B.M., Vörösmarty, C.J., and Schumann, A.H., Reconstructing 20th century global hydrography: a contribution to the Global Terrestrial Network—Hydrology (GTN-H), Hydrol. Earth System Sci., 2010, vol. 14, pp. 1–24.

    Article  Google Scholar 

  51. Yang, D., Park, H., Prowse, T., Shiklomanov, A., and McLeod, E., River ice processes and changes across the northern regions. Arctic hydrology, permafrost and ecosystems, Kane, D.L. and Hinkel, K.M., Springer Int. Publ., 2021, pp. 379–406. https://doi.org/10.1007/978-3-030-50930-9_13

    Book  Google Scholar 

  52. Zaveri, E., Grogan, D.S., Fisher-Vanden, K., Frolking, S., Lammers, R.B., Wrenn, D.H., Prusevich, A., Nicholas, R.E., Invisible water, visible impact: Groundwater use and Indian agriculture under climate change, Environ. Res. Lett., 2016, vol. 11, no. 8, pp. 84–96.

    Article  Google Scholar 

  53. Zuidema, S., Grogan, D., Prusevich, A., Lammers, R., Gilmore, S., and Williams, P., Interplay of changing irrigation technologies and water reuse: example from the upper Snake River basin, Idaho, USA, Hydrol. Earth Syst. Sci., 2020, no. 24, pp. 5231–5249. https://doi.org/10.5194/hess-24-5231-2020

Download references

ACKNOWLEDGEMENTS

The authors are grateful to the US National Science Foundation for the data presented for model validation.

Funding

The study was supported by the Russian Foundation for Basic Research, project no. 18–05–60 192 and US National Science Foundation, grants 1913962 and 1917515.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Tretiakov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tretiakov, M.V., Shiklomanov, A.I. Assessment of Influences of Anthropogenic and Climatic Changes in the Drainage Basin on Hydrological Processes in the Gulf of Ob. Water Resour 49, 820–835 (2022). https://doi.org/10.1134/S0097807822050165

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807822050165

Keywords:

Navigation