Skip to main content
Log in

Comprehensive Biogeochemical Analysis of Nitrogen Transformation Parameters

  • HYDROCHEMISTRY, HYDROBIOLOGY: ENVIRONMENTAL ASPECTS
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The potential for nitrogen attenuation in anoxic groundwater by examining the concentration and distribution patterns of electron acceptors, electron donors and microbiological parameters was assessed. Research was carried out for 25 monitoring bores in two anoxic alluvial aquifers Kovin-Dubovac and Knićanin-Čenta during the four years monitoring period (2010–2013). Nitrate and nitrite concentrations were mostly undetectable while ammonium, ferrous and total organic carbon concentrations were increased with sporadic sulfide appearance. Piper diagrams qualified these groundwaters as predominantly Ca2+(Mg2+)–\({\text{HCO}}_{3}^{ - }\) type. By Alekin classification waters belong to \({\text{C}}_{{\text{I}}}^{{{\text{Ca}}}}\) type. The multiple electron donors (organic carbon, iron minerals and sulfide) and spatial and temporal variability of alternative electron acceptors proved to be determining factors of dominant nitrogen reduction path way. Concentrations trends of chemical and microbiological parameters revealed the conditions suitable for nitrogen conservation and they are presented via developed maps and BART test results. Statistical analysis was evaluated by Principal Component Analysis and Cluster Dendograms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Adams, S., Titus, R., Pietesen, K., Tredoux, G., Harris, C., Hydrochemical characteristic of aquifers near Sutherland in the Western Karoo, South Africa, J. Hydrol., 2001, vol. 241, pp. 91–103.

    Article  Google Scholar 

  2. Alford, G. and Cullimore., R., The Application of Heat and Chemicals in the Control of Biofouling Events in Wells, CRC Press Lewis Publishers, Boca Raton, FL, 1999.

  3. Appelo, C.A.J. and Postma, D., Geochemistry, Groundwater and Pollution, CRS Press USA, 2005, 2nd Ed.

    Google Scholar 

  4. Böhlke, J.K., Smith, R.L., and Miller, D.N., Ammonium transport and reaction in contaminated groundwater: Application of isotope tracers and isotope fractionation studies, Water Resour. Res., 2006. https://doi.org/10.1029/2005WR004349

  5. Burgin, A.J. and Hamilton, S.K., Have we overemphasized the role of denitrification in aquatic ecosystems? A review of nitrate removal pathways, Front. Ecol. Environ., 2007, vol. 5, no. 2, pp. 89–96.

    Article  Google Scholar 

  6. Buss, S.R., Herbert, A.W., Morgan, P.S., and Thornton, F.A., Review of ammonium attenuation in soil and groundwater, Q. J. Eng. Geol. Hydrogeol., 2005, vol. 37, no. 4, pp. 347–359.

    Article  Google Scholar 

  7. Camargo, J., and Alonso, A., Ecological and toxicological effects of inorganic nitrogen pollution in aquatic ecosystems: A global assessment., Environ. Int., 2006, vol. 32, no. 6, pp. 831–849.

    Article  Google Scholar 

  8. Canfield, D.E. and Marais, D.J., Aerobic sulfate reduction in microbial mats, Science, 1991, vol. 251, pp. 1471–1473.

    Article  Google Scholar 

  9. Chapelle, F.H., Ground-Water Microbiology and Geochemistry, Wiley, 2001, ISBN-13:978-0471348528, 2nd Ed.

  10. Cullimore, D.R., Standard Methods for the Application of BART Testers in Environmental Investigations of Microbiological Activities, DBI, Canada, 2010.

    Google Scholar 

  11. Degremont, Water Treatment Handbook, Lavoisier SAS, 1991, ISBN: 2950398413, 6th Ed.

  12. Devlin, J.F., Eedy, R., and Butler, B.J., The effects of electron donor and granular iron on nitrate transformation rates in sediments from a municipal water supply aquifer, J. Contam. Hydrol., 2000, vol. 46, nos. 1–2, pp. 81–97.

    Article  Google Scholar 

  13. Dimkić, M., Kavanaugh, M., and Brauch, H.J., Groundwater Management in Large River Basins, London, UK: International Water Association (IWA) Publishing, 2008.

  14. Dworkin, M., Sergei Winogradsky: a founder of modern microbiology and the first microbial ecologist, FEMS Microbiol Rev., 2012. pp. 364–379.https://doi.org/10.1111/j.1574-6976.2011.00299.x

    Article  Google Scholar 

  15. Helena, B., Prardo, R., Vega, M., Barrado, E., Fernandez, J.M., and Fernandez, L., Temporal evolution of groundwater composition in an alluvial aquifer (Pisuerga River, Spain) by principal component analysis, Water Res., 2000, vol. 34, pp. 807–816.

    Article  Google Scholar 

  16. Jones, C.S., Kim, S., Wilton, T.F., et al., Nitrate uptake in an agricultural stream estimated from high-frequency, in-situ sensors, Environ. Monit. Assess., 2018, vol. 190, p. 226. https://doi.org/10.1007/s10661-018-6599-1

    Article  Google Scholar 

  17. Kaown, D., Koh, D.C., Mayer, B., and Lee, K.K., Identification of nitrate and sulfate sources in groundwater using dual stable isotope approaches for an agricultural area with different land use (Chuncheon, Mid-Eastern Korea), Agric., Ecosys. Environ., 2009, vol. 132, pp. 223–231.

    Article  Google Scholar 

  18. Kelso, B.H.L., Smith, R.V., Laughlin, R.J., and Lennox, S.D., Dissimilatory nitrate reduction in anaerobic sediments leading to river nitrite accumulation, Appl. Environ. Microb., 1997, vol. 63, no. 12, pp. 4679–4685.

    Article  Google Scholar 

  19. Kim, J.H., Kim, R.H., Lee, J.T., Cheong, J., Yum, B.W., and Chang, H.W., Multivariate statistical analysis to identify the major factors governing groundwater quality in the coastal area of Kimje, South Korea, Hydrol. Process., 2005, vol. 19, pp. 1261–1276.

    Article  Google Scholar 

  20. Kole, W., Werner, P., Strebel, O., and Bottcher, J., Denitrifikation in einem reduzierenden Grundwasserleiter, Vom Wasser, 1983, vol. 61, pp. 125–147.

    Google Scholar 

  21. Korom, S.F., Natural denitrification in the saturated zone: A review, Water Resour. Res., 1992, vol. 28, no. 6, pp. 1657–1668.

    Article  Google Scholar 

  22. Lee, J.Y., Cheon, J.Y., Lee, K.K., Lee, S.Y., and Lee, M.H., Statistical evaluation of geochemical parameter distribution in a ground water system contaminated with petroleum hydrocarbons, J. Environ. Qual., 2001, vol. 30, pp. 1548–1563.

    Article  Google Scholar 

  23. Lindenbaum, J., Identification of sources of ammonium in groundwater using stable nitrogen and boron isotopes in Nam Du, Hanoi, MSc Thesis, Sweden: Lund Univ., 2012, no. 300, 38 p.

  24. Lozovik, P.A. and Borodulina, G.S., Nitrogen compounds in the surface and subsurface waters of Karelia, Water Resour., 2009, vol. 36 no. 6, pp. 672–682, ISSN 0097-8078.

    Article  Google Scholar 

  25. Majkić-Dursun, B., Tončić, J., Petković, A., and Čolić, J., Redox conditions and groundwater quality issues in selected alluvial aquifers in Serbia, Water Sci. Technol., Water Supply, 2016. https://doi.org/10.2166/ws.2016.027

    Google Scholar 

  26. Miljević, N., Boreli-Zdravković, D., Obradović, V., Golobočanin, D., and Mayer, B., Evaluation of the origin of nitrate influencing the Ključ groundwater source, Serbia. Water Sci. Technol., 2012., pp. 472–478. https://doi.org/10.2166/wst.2012.179

    Article  Google Scholar 

  27. Megonigal, J.P., Mines, M.E., and Visscher, P.T., Linkages to trace gases and aerobic processes, Biogeochemistry, 2005, vol. 8, pp. 350–362.

    Google Scholar 

  28. Nikolenko, O., Jurado, A., Borges, V.A.V., Knӧller, K., and Brouyere, S., Isotopic composition of nitrogen species in groundwater under agricultural areas: A review, Sci. Total Environ., 2017. https://doi.org/10.1016/j.scitotenv.2017.10.086

    Article  Google Scholar 

  29. Ohmura, N., Sasaki, K., Matsumoto, N., and Saiki, H., Anaerobic respiration using Fe3+, S0, and H2 in the Chemolitoautotrophic Bacterium Acidithiobacilus ferrooxidans, J. Bacteriol., 2002, vol. 184, no. 8, pp. 2081–2087.

    Article  Google Scholar 

  30. Oshiki, M., Ishii, S., Yoshida, K., Fujii, N., Ishiguro, M., Satoh, H., and Okabe, S., Nitrate-dependent ferrous iron oxidation by anaerobic ammonium oxidation (Anammox) Bacteria, Appl. Environ. Microbiol., 2013, vol. 79, no. 13, pp. 4087–4093.

    Article  Google Scholar 

  31. Perović, M., Obradović, V., Kovačević, S., Mitrinović, D., Živančev, N., and Nenin, T., Indicators of groundwater potential for nitrate transformation in a reductive environment, Water Environ. Res., 2017, vol. 89, no. 1, pp. 4–16.

    Article  Google Scholar 

  32. Postma, D., Boesen, C., Kristiansen, H., and Larsen, F., Nitrate reduction in an unconfined sandy aquifer: water chemistry, reduction processes, and geochemical modeling, Water Resour. Res., 1991, pp. 2027–2045. https://doi.org/10.1029/91WR00989

    Article  Google Scholar 

  33. Razumov, V.A. and Tyutyunova, F.I., Nitrite contamination of the Moskva River: causes and effects, Water Resour., 2001, vol. 28, no. 3, pp. 324–334.

    Article  Google Scholar 

  34. Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N., and Bemment, C.D., Nitrate attenuation in groundwater: A review of biogeochemical controlling processes, Water Res., 2008, vol. 42, pp. 4215–4232.

    Article  Google Scholar 

  35. Salahudeen, J.H., Reshmi, R.R., Anoop, Krishnan, K., et al., Denitrification rates in estuarine sediments of Ashtamudi, Kerala, India, Environ Monit Assess., 2018, vol. 190, p. 323. https://doi.org/10.1007/s10661-018-6698-z

    Article  Google Scholar 

  36. Shesterkin, V.P. and Shesterkina, N.M., Long-term variability of nitrate and nitrite nitrogen runoff in the Amur River near Khabarovsk, Water Resour., 2014, ISSN 0097-8078, vol. 41, no. 4, pp. 439–445.

    Article  Google Scholar 

  37. Suk, H., and Lee, K.K., Characterization of a ground water hydrochemical system through multivariate analysis: clustering into ground water zones, Ground Water, 1999, vol. 37, pp. 358–366.

    Article  Google Scholar 

  38. Standard Methods for the Examination of Water and Wastewater, Washington DC, USA: American Public Health Association/American Water Works Association/Water Pollution Control federation, 2005, 21st Ed.

  39. Tiedje, J.M., Ecology of denitrification and dissimilatory nitrate reduction to ammonium, in Biology of Anaerobic Microorganisms, Zehnder, A.J.B., Ed., N.Y.: Wiley, 1988, pp. 179–244.

    Google Scholar 

  40. Thamdrup, B., Finster, K., Hansen, J.W., and Bak, F., Bacterial disproportionation of elemental sulfur coupled to the chemical reduction of iron and manganese, Appl. Environ. Microbiol., 1993, vol. 59, pp. 101–108.

    Article  Google Scholar 

  41. Thayalakumaran, T., Bristow, K.L., Charlesworth, P.B., and Fass, T., Geochemical conditions in groundwater systems: implications for the attenuation of agricultural nitrate, Agric. Water Manage., 2007, vol. 95, pp. 103–115.

    Article  Google Scholar 

  42. Vavilin, V.A., Describing a kinetic effect of fractionation of stable nitrogen isotopes in nitrification process, Water Resour., 2014, ISSN 0097-8078, vol. 41, no. 3, pp. 319–324.

    Article  Google Scholar 

  43. Visser, A., Trends in groundwater quality in relation to groundwater age, Faculty of Geosci., Utrecht Univ., Netherlands, 2009, ISBN 978-90-6809-427-5.

    Google Scholar 

  44. Wolfe, A.H., and Patz, J.A., Reactive nitrogen and human health: acute and long term implications, Ambiol., 2002, vol. 31, no. 2, pp. 120–125.

    Article  Google Scholar 

  45. WHO, Guidelines for drinking-water quality, vol. 1, Recommendations, 3rd Ed., 2008, vol. 1.

  46. Zavarin, G.A., Winogradsky and modern microbiology, Microbiol., 2006, vol. 75, no. 5, pp. 501–511. https://doi.org/10.1134/S0026261706050018

    Article  Google Scholar 

Download references

ACKNOWLDGMENTS

The research was financially supported by Ministry of Education, Science and Technology Development of the Republic of Serbia under the Project “Methodology for the Assessment, Design and Maintenance of Groundwater Sources in Alluvial Environments Depending on the Aerobic State,” no. TR37014.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marija Perovic, Vesna Obradovic or Boris Obrovski.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Marija Perovic, Obradovic, V., Zuber-Radenković, V. et al. Comprehensive Biogeochemical Analysis of Nitrogen Transformation Parameters. Water Resour 47, 156–170 (2020). https://doi.org/10.1134/S0097807820010121

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807820010121

Keywords:

Navigation