Skip to main content
Log in

Exchange of manganese compounds between bottom sediments and water: 2. Manganese flux from bed into water (a brief review of studies)

  • Water Quality and Protection: Environmental Aspects
  • Published:
Water Resources Aims and scope Submit manuscript

Abstract

The formation mechanisms of dissolved Mn flux from bottom sediments into water are considered. Data that characterize the processes of Mn compound transformations and factors that govern those processes are given. Data on the magnitudes of Mn fluxes from bed into water and processes that govern them are generalized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brekhovskikh, V.F., Kazmiruk, V.D., and Vishnevskaya, G.N., Biota v protsessakh massoperenosa v vodnykh ob”ektakh (Biota in Mass Transport Processes in Water Bodies), Moscow: Nauka, 2008.

    Google Scholar 

  2. Granina, L.Z. and Kallender, E., Elements of the iron and manganese cycles in Lake Baikal, Geochem. Int., 2007, no. 9, pp. 900–917.

    Google Scholar 

  3. Linnik, P.N. and Zhezherya, V.A., Metals migration in the bottom sediment-water system at decreasing pH and increasing concentration of fulvic acids, Gidrobiol. Zh., 2011, vol. 47, no. 3, pp. 91–110.

    Google Scholar 

  4. Martynova, M.V., Azot i fosfor v donnykh otlozheniyakh ozer i vodokhranilishch (Nitrogen and Phosphorus in Bottom Sediments of Lakes and Reservoirs), Moscow: Nauka, 1984.

    Google Scholar 

  5. Martynova, M.V., Impact of the chemical composition of bottom sediments on internal phosphorus load, Water Resour., 2008, vol. 35, no. 3, pp. 339–345.

    Article  Google Scholar 

  6. Martynova, M.V., Formation and magnitude of Fe fluxes in the water-bottom sediment system: An analytical review, Ekol. Khim., 2009, vol. 18, no. 3.

    Google Scholar 

  7. Martynova, M.V., Donnye otlozheniya kak sostavlyayushchaya limnicheskikh ekosistem (Bottom Sediments as a Component of Limnic Ecosystems), Moscow: Nauka, 2010.

    Google Scholar 

  8. Martynova, M.V., Manganese in bottom water and sediments of the Mozhaisk Reservoir: 1. Seasonal variations in water, Ekol. Khim., 2010, vol. 19, no. 4, pp. 229–235.

    Google Scholar 

  9. Martynova, M.V., Manganese in bottom water and sediments of the Mozhaisk Reservoir: 2. Seasonal variations in silts, Ekol. Khim., 2011, vol. 20, no. 1, pp. 17–27.

    Google Scholar 

  10. Martynova, M.V., Spatial distribution of iron and manganese concentrations in silts of a small reservoir, Ekol. Khim., 2011, vol. 20, no. 2, pp. 84–93.

    Google Scholar 

  11. Pakhomova, S.V., Kononets, M.Yu., Yudin, M.V., et al., Studies on the fluxes of dissolved metal forms through the water-bottom interface in Vistula Lagoon of the Baltic Sea, Okeanologiya, 2004, vol. 44, no. 4, pp. 516–523.

    Google Scholar 

  12. Rozanov, A.G., Manganese and other oxidizers of organic matter in White Sea bottom sediments, in Geologiya morei i okeanov. Mater. XVIII Mezhdunar. konf. (shkoly) po morskoi geologii (Geology of Seas and Oceans. Mater. XVIII Intern. Conf. (School) on Marine Geology), Moscow: GEOS, 2009, vol. IV, pp. 136–143.

    Google Scholar 

  13. Stravinskaya, E.A., Geochemistry of iron and manganese in mesotrophic lakes in northern humid zone: Case study of Lake Krasnoe, Extended Abstract of Cand. Sci. (Chem.) Dissertation, Irkutsk: Limnol. Inst., RAS, 1972.

    Google Scholar 

  14. Stravinskaya, E.A., The role of water-bottom sediment contact zone in iron and manganese cycle, in Evtrofirovanie mezotrofnogo ozera (Eutrophication of Mesotrophic Cycle), Leningrad: Nauka, 1980, pp. 200–209.

    Google Scholar 

  15. Strakhov, N.M., Tipy litogeneza i ikh evolyutsiya v istorii Zemli (Types of Lithogenesis and Their Evolution in Earth History), Moscow: Gosgeoltekhizdat, 1963.

    Google Scholar 

  16. Adams, D.D., Matisoff, G., and Snodgrass, W.J., Flux of reduced chemical constituents Fe2+, Mn2+, NH4 +, CH4 and oxygen demand in lake Erie, Hydrobiol., 1982, vol. 91/92, July, pp. 405–414.

    Article  Google Scholar 

  17. Aller, R.C., Diagenetic processes near the sedimentwater interface of Long Island Sound. II. Fe and Mn, Adv. Geophys., 1980, vol. 22, p. 349–413.

    Google Scholar 

  18. Aller, R.C., Bioturbation and manganese cycling in hemipelagic sediments, Phil. Trans. Roy. Soc., London: Series A: Mathematical and physical Sciences, 1990, vol. 331, no. 1616, pp. 51–68.

    Article  Google Scholar 

  19. Aller, R.C., The sedimentary Mn cycle in Long Island Sound: Its role as intermediate oxidant and the influence of bioturbation, O2 and Corg flux on diagenetic reaction balances, J. Mar. Res., 1994, vol. 52, no. 2, pp. 259–295.

    Article  Google Scholar 

  20. Balzer, W., On the distribution of iron and manganese at the sediment∣water interface: thermodynamic versus kinetic control, Geochim. Cosmochim. Acta, 1982, vol. 46, no. 7, p. 1153–1167.

    Article  Google Scholar 

  21. Belkina, N., Kalmykov, M., Saudman, O., and Ignatyeva, N., Pore water in the sediments of northern Lake Ladoga in Proc. of the Third Intern. Lake Ladoga Sympos., Peltonen, A., Grenlund, E., and Viljanen, M., Eds., Publ. Karelian Inst., 2000, no. 0129, pp. 305–309.

    Google Scholar 

  22. Brandl, H., Mikrobielle Prozesse unter oxidationsmittellimitierten Bedingungen an der Sediment-Wasserübergangszone in Seen, Ph. D. thesis, Zürich: University of Zürich, 1987.

    Google Scholar 

  23. Canfield, D.E., Thamdrup, B., and Hansen, J.W., The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction, Geochim. Cosmochim. Acta, 1993, vol. 57,Is. 16, pp. 3867–3883.

    Article  Google Scholar 

  24. Davison, W. and Woof, C., A study of the cycling of manganese and other elements in a seasonally anoxic lake, Rostherne Mere, U.K., Water Res., 1984, vol. 18, no. 6, p. 727–734.

    Article  Google Scholar 

  25. Davison, W., Woof, C., and Rigg, E., The dynamics of iron and manganese in a seasonally anoxic lake; direct measurement of fluxes using sediment traps, Limnol. Oceanogr., 1982, vol. 27, no. 6, p. 987–1003.

    Article  Google Scholar 

  26. Delfino, J.J. and Lee, G.F., Chemistry of Mn in Lake Mendota, Wisconsin, Environ. Sci. Technol., 1968, vol. 2, p. 1094–1100.

    Article  Google Scholar 

  27. De Schamphelaire, L., Rabaey, R., Boon, N., et al., Minireview: the potential of exchanged manganese redox cycling for sediment oxidation, Geomicrob. J., 2007, vol. 24, p. 547–558.

    Article  Google Scholar 

  28. Eaton, A., The impact of enoxia of Mn fluxes in the Chesapeake Bay, Geochim. Cosmochim. Acta, 1979, vol. 43, p. 429–432.

    Article  Google Scholar 

  29. Epping, E.H.G., Schoemann, V., and Heij, H., Manganese and iron oxidation during benthic oxygenic photpsynthesis, Estuar. Coast. Shelf Sci., 1998, vol. 47,Is. 6, pp. 753–767.

    Article  Google Scholar 

  30. Ferro, I., Van Nugteren, P., Middelburg, J.J., et al., Effect of macrofauna, sediment ventilation and particle reworking on sedimentary iron and manganese pools in a mesocosm experiment, Vie et Milieu, 2003, vol. 53, pp. 211–220.

    Google Scholar 

  31. Froelich, P.N., Klinkhammer, G.P., Bender, M.L., et al., Early oxidation of organic matter in pelagic sediments of eastern equatorial Atlantic: suboxic diagenesis, Geochim. Cosmochim. Acta, 1979, vol. 43, pp. 1075–1090.

    Article  Google Scholar 

  32. Gahuström, G. and Anderson, G., An attempt to quantify sediment processes in the acidified Lake Gårdsjön, SW Sweden, Ecol. Bull., 1985, no. 37, p. 327–336.

    Google Scholar 

  33. Gantzer, P.A., Bryant, L.D., and Little, J.C., Controlling soluble iron and manganese in a water-supply reservoir using hypolimnetic oxygenation, Water Res., 2009, vol. 43, no. 5, p. 1285–1994.

    Article  Google Scholar 

  34. Ghiorse, W.C., Microbial reduction of manganese and iron, in Biology of Anaerobic Microorganisms, Zehnder, A.J.B.N., Ed., N.Y.: Wiley-Interscience, 1988, pp. 305–331.

    Google Scholar 

  35. Glass, G.E. and Poldoski, J.E., Interstitial water components and exchanger across the water sediment interface of western Lake Superior, Verh. Internat. Verein. Limnol., 1975, vol. 19, pp. 405–420.

    Google Scholar 

  36. Graf, G., Benthic-pelagic coupling in a deep-sea benthic community, Nature, 1989, vol. 341, no. 6242, pp. 437–439.

    Article  Google Scholar 

  37. Hamilton-Taylor, J. and Morris, E.B., The dynamics of iron and manganese in the surface sediments of a seasonally anoxic lake, Arch. Hydrobiol., 1985, no. Suppl. 72, pp. 135–165.

    Google Scholar 

  38. Hanselmann, K. and Hutter, R., Geomicrobiological coupling of sulfur and iron cyclung in anoxic sediments of a meromictic lake sulfate reduction and sulfide sources and sinks in Lake Cadagno in Lake Cadagno: AMeromictic Alpine Lake, Peducci, R., and Bachofen, R., Tonolla, M., Eds., Documenta, Ist. Ital. Idrobiol., 1998, vol. 63, pp. 85–98.

    Google Scholar 

  39. Heggie, D., Klinkhammer, G., and Gullen, D., Manganese and copper fluxes from continental margin sediments, Geochim. Cosmochim. Acta, 1987, vol. 57, no. 3, pp. 1059–1070.

    Article  Google Scholar 

  40. Hongve, D., Cycling of iron, manganese and phosphate in meromectic lake, Limnol. Oceanogr., 1997, vol. 42, no. 4, pp. 635–647.

    Article  Google Scholar 

  41. Hoyer, O., Bernhardt, H., Clasen, J., and Wilhelms, A., In situ studies on the exchange between sediment and water using caissons in the Wahnbach Reservoir, Ergebnisse der Limnology, 1982, no. 18, pp. 79–100.

    Google Scholar 

  42. Hunt, C.D., Variability in the benthic Mn flux in coastal marine ecosystems resulting from temperature and primary production, Limnol. Oceanogr., 1983, vol. 28, no. 5, pp. 913–923.

    Article  Google Scholar 

  43. Jahnke, R., Heggie, D., Emerson, S., and Grundmanis, V., Pore waters of Central Pacific Ocean: nutrient results, Earth. Planet. Sci. Lett., 1982, vol. 61, pp. 233–256.

    Article  Google Scholar 

  44. Jaquet, J.M., Nembrini, G., Garcia, J., and Vernet, J.-P., The manganese cycle in Lac Léman, Switzerland, the role of metallogenium, Hydrobiologia, 1982, vol. 91, pp. 323–340.

    Article  Google Scholar 

  45. Johnson, R.S., Berelson, W.M., Coale, K.H., et al., Manganese flux from continental margin sediments in a transect through the oxygen minimum, Science, 1992, vol. 257, no. 5074, pp. 1242–1244.

    Article  Google Scholar 

  46. Katsev, S., Chaillou, G., and Sundby, B., Effects of progressive oxygen depletion on sediment diagenesis and fluxes: a model for the lower St. Lawrence River estuary, Limnol. Oceanogr., 2007, vol. 52, no. 6, pp. 2555–2568.

    Article  Google Scholar 

  47. Levin, L.A., Rathburn, A.E., Gutierrez, D., et al., Bioturbation by symbiont-bearing annelids in near-anoxic sediments: implicatios for biofacies models and paleooxygen assessments, Palaeogeogr. Palaeocl., 2003, vol. 199, pp. 129–140.

    Article  Google Scholar 

  48. Li, J., Diagenesis and sediment-water exchanges in organic-poor sediments of Lake Superior, University of Minnesota. Master’s Thesis, 2011.

    Google Scholar 

  49. Magen, C., Mucci, A., and Sundby, B., Reduction rates of sedimentary Mn and Fe oxides: an incubation experiment with Arctic Ocean sediments, Aquat. Geochem., 2011, vol. 17, no. 5, pp. 629–643.

    Article  Google Scholar 

  50. Mangini, A., Jung, M., and Laukenmann, S., What do we learn from peaks of uranium and of manganese in deep sea sediments?, Mar. Geol., 2001, vol. 177, pp. 63–78.

    Article  Google Scholar 

  51. McCaffrey, R.J., Myers, A.C., Davey, E., et al., The relation between pore water chemistry and benthic fluxes of nutrients and manganese in Narragansett Bay, Rhode Island, Limnol. Oceanogr., 1980, vol. 25, no. 1, pp. 31–44.

    Article  Google Scholar 

  52. Meijer, L. and Avnimelech, Y., On the use of microelectrodes in fish pond sediments, Aquacultural Engineering, 1999, vol. 21, no. 1, pp. 71–83.

    Article  Google Scholar 

  53. Morgan, J.J., Kinetics of reaction between O2 and Mn(II) species in aqueous solutions, Geochim. Cosmochim. Acta, 2005, vol. 69, no. 1, pp. 35–48.

    Article  Google Scholar 

  54. Mouret, A., Anschutz, P., Lecroart, P., et al., Bentic geochemistry of manganese in the Bay of Biscay and sediment mass accumulation rate, Geo-Marine Letters, 2009, vol. 29, no. 3, pp. 133–149.

    Article  Google Scholar 

  55. Murray, J.W., Mechanisms in distribution of trace elements in oceans and lakes, in Sources and Fates Aquatic Pollutants. ASC Symp. Ser., 1987, vol. 216, pp. 153–183.

    Article  Google Scholar 

  56. Ostendorp, W. and Frevert, T., Untersuchungen zur manganfreisetzung und zum mangangehalt der sedimentoberschicht im Bodensee, Arch. Hydrobiol. Suppl., 1979, nos. 3–4, pp. 255–277.

    Google Scholar 

  57. Overnell, J., Manganese and iron profiles during early diagenesis in Loch Etive, Scotland. Application of two diagenetic models, Estuar. Coast. Shef Sci., 2002, vol. 54, no. 1, pp. 33–44.

    Article  Google Scholar 

  58. Schaller, T. and Wehrli, B., Geochemical-focusing of manganese in lake sediments—an indicator of deepwater oxygen conditions, Aquatic Geochemistry, 1997, vol. 2, pp. 359–378.

    Article  Google Scholar 

  59. Sholkovitz, E.R., Redox-related geochemistry in lakes: alkali metals, alkaline-earth elements, and 137Cs, in Chemical Processes in Lakes, Stumm, W., Ed., 1985, pp. 119–142.

    Google Scholar 

  60. Shuttelworth, S.M., Davison, W., and Hamilton-Taylor, J., Two-dimensional and fine structure in the concentrations of iron and manganese in sediment porewater, Environ. Sci. Technol., 1999, vol. 33, no. 23, pp. 4169–4175.

    Article  Google Scholar 

  61. Sundby, B., Anderson, L.G., Hall, P.O.J., Iverfeldt, A., et al., The effect of oxygen on the release and uptake of cobalt, manganese, iron and phosphate at the sediment-water interface, Geochim. Cosmochim. Acta, 1986, vol. 50, pp. 1281–1288.

    Article  Google Scholar 

  62. Sundby, B. and Silverberg, N., Manganese fluxes in the benthic boundary layer, Limnol. Oceanog., 1985, vol. 30, no. 2, pp. 372–381.

    Article  Google Scholar 

  63. Thamdrup, B., Fossing, H., and Jørgensen, B., Manganese, iron and sulfur cycling in a cjastal marine sediment, Aaarhus Bay, Denmark, Geochim. Cosmochim. Acta, 1994, vol. 58, no. 2, pp. 5115–5130.

    Article  Google Scholar 

  64. Thamdrup, B., Glud, R.N., and Hansen, J.W., Manganese oxidation and in situ fluxes from a coastal sediment, Geochim. Cosmochim. Acta, 1994, vol. 58, pp. 2563–2570.

    Article  Google Scholar 

  65. Thomson, J., Higgs, N.C., Wilson, T.R.S., et al., Solute transfer across the sediment surface of a eutrophic lake. 1. Porewater profiles from dialysis samplers, Aquat. Sci., 1997, vol. 59, no. 1, pp. 1–25.

    Article  Google Scholar 

  66. Van Cappelen, P. and Wang, Y., Cycling of iron and manganese in surface sediments: a general theory for the coupled transport and reaction of carbon, oxygen, nitrogen, sulfur, iron and manganese, Am. J. Sci., 1996, vol. 296, no. 3, pp. 197–243.

    Article  Google Scholar 

  67. Verdouw, H. and Dekkers, E.M.J., Iron and manganese in lake Vechten (the Netherlands); dynamics and role in the cycle of reducing power, Arch. Hydrobiol., 1980, vol. 89, Bd. 4, pp. 509–532.

    Google Scholar 

  68. Warnken, K.W., Gill, G.A., Griffin, L.I., and Santschi, P.H., Sediment-water exchange of Mn, Fe, Ni and Zn in Galverston Bay, Texas, Mar. Chem., 2001, vol. 73, no. 3, pp. 215–231.

    Article  Google Scholar 

  69. Xu, K., Zhang, L., and Zou, W., Microelectrode study of oxygen uptake and organic matter decomposition in the sediments of Xiamen Western Bay, Estuaries and Coasts, 2009, vol. 32, pp. 425–435.

    Article  Google Scholar 

  70. Ziebis, W., Huettel, M., and Forster, S., Impact of biogenic sediment topography on oxygen fluxes in permeable sea beds, Mar. Ecol. Progr. Ser., 1996, vol. 140, pp. 227–237.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Martynova.

Additional information

Original Russian Text © M.V. Martynova, 2014, published in Vodnye Resursy, 2014, Vol. 41, No. 2, pp. 180–190.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Martynova, M.V. Exchange of manganese compounds between bottom sediments and water: 2. Manganese flux from bed into water (a brief review of studies). Water Resour 41, 178–187 (2014). https://doi.org/10.1134/S0097807814020092

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0097807814020092

Keywords

Navigation