Skip to main content
Log in

Mass Transfer, Kinetic, Equilibrium, and Thermodynamic Study on Removal of Divalent Lead from Aqueous Solutions Using Agrowaste Biomaterials, Musa acuminata, Casuarina equisetifolia L., and Sorghum bicolor

  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

Three distinct agricultural waste materials, viz., casuarina fruit powder (CFP), sorghum stem powder (SSP), and banana stem powder (BSP) were used as low-cost adsorbents for the removal of toxic lead(II) from aqueous solutions. Acid treated adsorbents were characterized by scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transform infrared spectroscopy (FTIR). The effects of parameters like adsorbent dose, pH, temperature, initial metal ion concentration, and time of adsorption on the removal of Pb(II) were analyzed for each adsorbent individually and the efficiency order was BSP > SSP > CFP. Based on the extent of compatibility to Freundlich/Langmuir/Dubinin–Radushkevich/Temkin adsorption isotherms and different models (pseudo-first and second order, Boyd, Weber’s, and Elovich), chemisorption primarily involved in the case of BSP and SSP, whereas simultaneous occurrence of chemisorption and physisorption was proposed in the case of CFP which was correlating with the thermodynamic study results conducted at different temperatures. Based on the observations, it was proposed that three kinetic stages involve in the adsorption process, viz., diffusion of sorbate to sorbent, intra particle diffusion, and then establishment of equilibrium. These adsorbents have a promising role towards the removal of Pb(II) from industrial wastewater to contribute environmental protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Saeed, A., Iqbal, M., and Akhtar, M.W., Removal and recovery of lead (II) from single and multimetal (Cd, Cu, Ni, Zn) solutions by crop milling waste (black gram husk), J. Hazard. Mater., 2005, vol. 117, no. 1, pp. 65–73. https://doi.org/10.1016/j.jhazmat.2004.09.008

    Article  CAS  PubMed  Google Scholar 

  2. Saka, C., Şahin, Ö., and Küçük, M.M., Applications on agricultural and forest waste adsorbents for the removal of lead (II) from contaminated waters, Int. J. Environ. Sci. Technol., 2012, vol. 9, no. 2, pp. 379–394. https://doi.org/10.1007/s13762-012-0041-y

    Article  CAS  Google Scholar 

  3. Khan, A., Badshah, S., and Airoldi, C., Environmentally benign modified biodegradable chitosan for cation removal, Polym. Bull., 2015, vol. 72, no. 2, pp. 353–370. https://doi.org/10.1007/s00289-014-1278-z

    Article  CAS  Google Scholar 

  4. Ho, Y.S., Effect of pH on lead removal from water using tree fern as the sorbent, Bioresour. Technol., 2005, vol. 96, no. 11, pp. 1292–1296. https://doi.org/10.1016/j.biortech.2004.10.011

    Article  CAS  PubMed  Google Scholar 

  5. Dietrich, K.N., Succop, P.A., Bornschein, R.L., Krafft, K.M., Berger, O., Hammond, P.B., and Buncher, C.R., Lead exposure and neurobehavioral development in later infancy, Environ. Health Perspect., 1990, vol. 89, pp. 13–19. https://doi.org/10.1289/ehp.908913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Goldstein, G.W., Lead poisoning and brain cell function, Environ. Health Perspect., 1990, vol. 89, pp. 91–94. https://doi.org/10.1289/ehp.908991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Lalhruaitluanga, H., Jayaram, K., Prasad, M.N.V., and Kumar, K.K., Lead (II) adsorption from aqueous solutions by raw and activated charcoals of Melocanna baccifera Roxburgh (bamboo)—a comparative study, J. Hazard. Mater., 2010, vol. 175, no. 1, pp. 311–318. https://doi.org/10.1016/j.jhazmat.2009.10.005

    Article  CAS  PubMed  Google Scholar 

  8. Rashid, M., and Khan, F., Removal of Pb (II) ions from aqueous solutions using hybrid organic–inorganic composite material: Zr (IV) iodosulphosalicylate, J. Water Process Eng., 2014, vol. 3, pp. 53–61. https://doi.org/10.1016/j.jwpe.2014.07.003

    Article  Google Scholar 

  9. Elham, A., Hossein, T., and Mahnoosh, H., Removal of Zn (II) and Pb (II) ions using rice husk in food industrial wastewater, J. Appl. Sci. Environ. Manage., 2010, vol. 14, no. 4, p. 159–162. https://doi.org/10.4314/jasem.v14i4.63306

    Article  Google Scholar 

  10. Febrianto, J., Kosasih, A.N., Sunarso, J., Ju, Y.H., Indraswati, N., and Ismadji, S., Equilibrium and kinetic studies in adsorption of heavy metals using biosorbent: A summary of recent studies, J. Hazard. Mater., 2009, vol. 162, no. 2, pp. 616–645. https://doi.org/10.1016/j.jhazmat.2008.06.042

    Article  CAS  PubMed  Google Scholar 

  11. Li, X.M., Zheng, W., Wang, D.B., Yang, Q., Cao, J.B., Yue, X., Shen, T.T., and Zeng, G. M., Removal of Pb (II) from aqueous solutions by adsorption onto modified areca waste: Kinetic and thermodynamic studies, Desalination, 2010, vol. 258, no. 1, pp. 148–153. https://doi.org/10.1016/j.desal.2010.03.023

    Article  CAS  Google Scholar 

  12. Tang, Y., Chen, L., Wei, X., Yao, Q., and Li, T., Removal of lead ions from aqueous solution by the dried aquatic plant, Lemna perpusilla Torr., J. Hazard. Mater., 2013, vol. 244, pp. 603–612. https://doi.org/10.1016/j.jhazmat.2012.10.047

    Article  CAS  PubMed  Google Scholar 

  13. Hossain, M.A., Ngo, H.H., Guo, W.S., and Setiadi, T., Adsorption and desorption of copper (II) ions onto garden grass, Bioresour. Technol., 2012, vol. 121, pp. 386–395. https://doi.org/10.1016/j.biortech.2012.06.119

    Article  CAS  PubMed  Google Scholar 

  14. Ramya, P.M., Venkata, N.R., Jayasravanthi, M., and Dulla, B.J., Chemical oxygen demand reduction from coffee processing waste water – A comparative study on usage of biosorbents prepared from agricultural wastes, Global NEST J., 2015, vol. 17, pp. 291–300.

    Article  CAS  Google Scholar 

  15. Chen, J.P., and Yang, L., Chemical modification of Sargassum sp. for prevention of organic leaching and enhancement of uptake during metal biosorption, Ind. Eng. Chem. Res., 2005, vol. 44, no. 26, pp. 9931–9942. https://doi.org/10.1021/ie050678t

    Article  CAS  Google Scholar 

  16. Li, K., Fu, S., Zhan, H., Zhan, Y., and Lucia, L., Analysis of the chemical composition and morphological structure of banana pseudo-stem, BioResources, 2010, vol. 5, no. 2, p. 576–585.

    CAS  Google Scholar 

  17. Firdous, R., and Gilani, A. H., Changes in chemical composition of sorghum as influenced by growth stages and cultivar, Asian-Australas. J. Anim. Sci., 2001, vol. 14, no. 7, pp. 935–940. https://doi.org/10.5713/ajas.2001.935

    Article  CAS  Google Scholar 

  18. Ogunwande, I.A., Flamini, G., Adefuye, A.E., Lawal, N.O., Moradeyo, S., and Avoseh, N.O., Chemical compositions of Casuarina equisetifolia L., Eucalyptus toreliana L. and Ficus elastica Roxb. ex Hornem cultivated in Nigeria, S. Afr. J. Bot., 2011, vol. 77, no. 3, pp. 645–649. https://doi.org/10.1016/j.sajb.2011.02.001

    Article  CAS  Google Scholar 

  19. Lerivrey, J., Dubois, B., Decock, P., Micera, G., Urbanska, J., and Kozłowski, H., Formation of D-glucosamine complexes with Cu (II), Ni (II) and Co (II) ions, Inorg. Chim. Acta, 1986, vol. 125, no. 4, pp. 187–190. https://doi.org/10.1016/S0020-1693(00)81209-8

    Article  CAS  Google Scholar 

  20. Örnek, A., Özacar, M., and Şengil, İ.A., Adsorption of lead onto formaldehyde or sulphuric acid treated acorn waste: Equilibrium and kinetic studies, Biochem. Eng. J., 2007, vol. 37, no. 2, pp. 192–200. https://doi.org/10.1016/j.bej.2007.04.011

    Article  CAS  Google Scholar 

  21. Okoye, A.I., Ejikeme, P.M., and Onukwuli, O.D., Lead removal from wastewater using fluted pumpkin seed shell activated carbon: Adsorption modeling and kinetics, Int. J. Environ. Sci. Tech., 2010, vol. 7, no. 4, pp. 793–800. https://doi.org/10.1007/BF03326188

    Article  CAS  Google Scholar 

  22. Moradi, O., The removal of ions by functionalized carbon nanotube: Equilibrium, isotherms and thermodynamic studies, Chem. Biochem. Eng. Q., 2011, vol. 25, no. 2, pp. 229–240.

    CAS  Google Scholar 

  23. Lagergren, S., About the theory of so-called adsorption of soluble substances, K. Sven. Vetenskapsakad. Handl., 1898, vol. 24, pp. 1–39.

    Google Scholar 

  24. Ho, Y.S., and McKay, G., Pseudo-second order model for sorption processes, Process Biochem., 1999, vol. 34, no. 5, pp. 451–465. https://doi.org/10.1016/S0032-9592(98)00112-5

    Article  CAS  Google Scholar 

  25. Gupta, V.K., Gupta, M., and Sharma, S., Process development for the removal of lead and chromium from aqueous solutions using red mud—an aluminium industry waste, Water Res., 2001, vol. 35, no. 5, pp. 1125–1134. https://doi.org/10.1016/S0043-1354(00)00389-4

    Article  CAS  PubMed  Google Scholar 

  26. Igwe, J.C., Ogunewe, D.N., and Abia, A.A., Competitive adsorption of Zn (II), Cd (II) and Pb (II) ions from aqueous and non-aqueous solution by maize cob and husk, Afr. J. Biotechnol., 2005, vol. 4, no. 10, pp. 1113–1116.

    CAS  Google Scholar 

  27. Goswami, S. and Ghosh, U.C., Studies on adsorption behaviour of Cr (VI) onto synthetic hydrous stannic oxide, Water SA, 2006, vol. 31, no. 4, pp. 597–602. https://doi.org/10.4314/wsa.v31i4.5150

    Article  Google Scholar 

  28. Kumar, P.S., Vincent, C., Kirthika, K., and Kumar, K.S., Kinetics and equilibrium studies of Pb2+ in removal from aqueous solutions by use of nano-silversol-coated activated carbon, Braz. J. Chem. Eng., 2010, vol. 27, no. 2, pp. 339–346. https://doi.org/10.1590/S0104-66322010000200012

    Article  Google Scholar 

  29. Patrulea, V., Negrulescu, A., Mincea, M.M., Pitulice, L.D., Spiridon, O.B., and Ostafe, V., Optimization of the removal of copper (II) ions from aqueous solution on chitosan and cross-linked chitosan beads, BioResources, 2013, vol. 8, no. 1, pp. 1147–1165.

    Article  Google Scholar 

  30. Zheng, W., Li, X.M., Wang, F., Yang, Q., Deng, P., and Zeng, G.M., Adsorption removal of cadmium and copper from aqueous solution by areca — A food waste, J. Hazard. Mater., 2008, vol. 157, no. 2, pp. 490–495. https://doi.org/10.1016/j.jhazmat.2008.01.029

    Article  CAS  PubMed  Google Scholar 

  31. Sharma, Y.C., Prasad, G., and Rupainwar, D.C., Removal of Ni (II) from aqueous solutions by sorption, Int. J. Environ. Stud., 1991, vol. 37, no. 3, pp. 183–191. https://doi.org/10.1080/00207239108710629

    Article  CAS  Google Scholar 

  32. Tewari, N., Vasudevan, P., and Guha, B.K., Study on biosorption of Cr (VI) by Mucor hiemalis, Biochem. Eng. J., 2005, vol. 23, no. 2, pp. 185–192. https://doi.org/10.1016/j.bej.2005.01.011

    Article  CAS  Google Scholar 

  33. Dai, J., and Mumper, R.J., Plant phenolics: Extraction, analysis and their antioxidant and anticancer properties, Molecules, 2010, vol. 15, no. 10, pp. 7313–7352. https://doi.org/10.3390/molecules15107313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ho, Y.S., and McKay, G., Sorption of dyes and copper ions onto biosorbents, Process Biochem., 2003, vol. 38, no. 7, pp. 1047–1061. https://doi.org/10.1016/S0032-9592(02)00239-X

    Article  CAS  Google Scholar 

  35. Panday, K.K., Prasad, G., and Singh, V.N., Removal of Cr (V1) from aqueous solutions by adsorption on fly ash-wollastonite, J. Chem. Technol. Biotechnol., 1984, vol. 34, no. 7, pp. 367–374. https://doi.org/10.1002/jctb.5040340703

    Article  Google Scholar 

  36. Nassar, N.N., Rapid removal and recovery of Pb (II) from wastewater by magnetic nano adsorbents, J. Hazard. Mater., 2010, vol. 184, no. 1, pp. 538–546. https://doi.org/10.1016/j.jhazmat.2010.08.069

    Article  CAS  PubMed  Google Scholar 

  37. Mckay, G., Blair, H.S., and Gardner, J.R., Adsorption of dyes on chitin. I. Equilibrium studies, J. Appl. Polym. Sci., 1982, vol. 27, no. 8, pp. 3043–3057. https://doi.org/10.1002/app.1982.070270827

    Article  CAS  Google Scholar 

  38. Singanan, M., Removal of lead (II) and cadmium (II) ions from wastewater using activated biocarbon, ScienceAsia, 2011, vol. 37, pp. 115–119. https://doi.org/10.2306/scienceasia1513-1874.2011.37.115

    Article  CAS  Google Scholar 

  39. Dąbrowski, A., Adsorption — From theory to practice, Adv. Colloid Interface Sci., 2001, vol. 93, nos. 1–3, pp. 135–224. https://doi.org/10.1016/S0001-8686(00)00082-8

    Article  PubMed  Google Scholar 

  40. Al-Jlil, S.A. and Alsewailem, F.D., Saudi Arabian clays for lead removal in wastewater, Appl. Clay Sci., 2009, vol. 42, no. 3, pp. 671–674. https://doi.org/10.1016/j.clay.2008.03.012

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are highly thankful to Acharya Nagarjuna University for providing the support for conducting the research work. The authors also wish to thank SAIF, IIT, Madras for providing SEM-EDAX instrumentation facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Venkata Nadh Ratnakaram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramya Prasanthi Mokkapati, Ratnakaram, V.N. & Mokkapati, J. Mass Transfer, Kinetic, Equilibrium, and Thermodynamic Study on Removal of Divalent Lead from Aqueous Solutions Using Agrowaste Biomaterials, Musa acuminata, Casuarina equisetifolia L., and Sorghum bicolor. Theor Found Chem Eng 53, 578–590 (2019). https://doi.org/10.1134/S0040579519040249

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040579519040249

Keywords:

Navigation