Skip to main content
Log in

Use of microtechnologies for intensifying industrial processes

  • Catalytic Processes
  • Published:
Theoretical Foundations of Chemical Engineering Aims and scope Submit manuscript

Abstract

The use of new technologies based on microstructured reactors in industrial processes, including the obtainment of hydrogen peroxide, the catalytic oxidation of ammonia, the utilization of rocket fuels, fine organic synthesis, polymerization, and phase transfer catalysis, were considered. The transition to microtechnologies considerably increases the performance of the process; at the same time, the product yield increases as compared with periodically operating reactors, which allows for a reduction of costs at the separation stage of the reaction mixture and the extraction of the reaction products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hessel, V., Löb, P., Krtschil, U. and Löwe, H., Microstructured Reactors for Development and Production in Pharmaceutical and Fine Chemistry, New Avenues to Efficient Chemical Synthesis: Emerging Technologies, Ernst Schering Foundation Symp., Berlin, 2006, vol. 3, pp. 205–240.

    Article  Google Scholar 

  2. Hogan, J., Lab on a Chip: A Little Goes a Long Way, Nature, 2006, vol. 442, no. 7101, pp. 351–352.

    Article  CAS  Google Scholar 

  3. Reisch, M., Clariant Pushes Microreactors for Pharmaceuticals, Chem. Eng. News, 2004, vol. 82, no. 35, p. 9.

    Google Scholar 

  4. Rouhi, A.M., Microreactors Eyed for Industrial Use, Chem. Eng. News, 2004, vol. 82, no. 27, pp. 18–19.

    Google Scholar 

  5. Veser, G., Experimental and Theoretical Investigation of H2 Oxidation in a High-Temperature Catalytic Microreactor, Chem. Eng. Sci., 2001, vol. 56, no. 4, pp. 1265–1273.

    Article  CAS  Google Scholar 

  6. Freemantle, M., Microprocessing on a Large Scale, Chem. Eng. News, 2004, vol. 82, no. 41, pp. 39–43.

    Google Scholar 

  7. Pennemann, H., Hessel, V. and Lowe, H., Chemical microprocess technology — from laboratory-scale to production, Chem. Eng. Sci., 2004, vol. 59, no. 22–23, pp. 4789–4794.

    CAS  Google Scholar 

  8. Brownstein, A., Elf Atochem finds Direct H2O2 Route, Eur. Chem. News, 1999, vol. 71, no. 1886, pp. 36–38.

    Google Scholar 

  9. Huckins, H.A., US Patent 5 641 467, 1995.

  10. Voloshin, Yu., Lawal, A. and Haider, R., Kinetics of Hydrogen Peroxide Synthesis in a Microreactor by Direct Combination of Oxygen and Hydrogen, Proc. 2007 AIChE Spring National Meeting, Houston, Tex., 2007.

  11. Rebrov, E.V., de Croon, M.H.J.M. and Schouten, J.C., Design of a Microstructured Reactor with Integrated Heat Exchanger for Optimum Performance of a Highly Exothermic Reaction, Catal. Today, 2001, vol. 69, nos. 1–4, pp. 183–192.

    Article  CAS  Google Scholar 

  12. Rebrov, E.V., Duinkerke, S. A., de Croon, M.H.J.M. and Schouten, J.C., Optimization of Heat Transfer Characteristics, Flow Distribution, and Reaction Processing for a Microstructured Reactor/Heat-Exchanger for Optimal Performance in Platinum Catalyzed Ammonia Oxidation, Chem. Eng. J., 2003, vol. 93, no. 3, pp. 201–216.

    Article  CAS  Google Scholar 

  13. Tiggelaar, R.M., Loeters, P.W.H., van Male, P., et al., Thermal and Mechanical Analysis of a Microreactor for High Temperature Catalytic Gas Phase Reactions, Sens. Actuators A., 2004, vol. 112, nos. 2–3, pp. 267–277.

    Google Scholar 

  14. Tiggelaar, R.M., van Male, P., Berenschot, J.W., et al., Fabrication of a High-Temperature Microreactor with Integrated Heater and Sensor Patterns on an Ultrathin Silicon Membrane, Sens. Actuators A., 2005, vol. 119, no. 1, pp. 196–205.

    Article  Google Scholar 

  15. Ismagilov, I.Z., Michurin, E.M., Sukhova, O.B., et al., Oxidation of Organic Compounds in a Micro-Structured Catalytic Reactor, Chem. Eng. J., 2008, vol. 135, no. SI, pp. S57–S65.

    Article  CAS  Google Scholar 

  16. Rebrov, E.V., Ismagilov, I.Z., Ekatpure, R.P., et al., Header Design for Flow Equalization in Microstructured Reactors, AIChE J., 2007, vol. 53, no. 1, pp. 28–38.

    Article  CAS  Google Scholar 

  17. Rebrov, E.V., Ekatpure, R.P., de Croon, M.H.J.M. and Schouten, J.C., Design of a Thick-Walled Screen for Flow Equalization in Microstructured Reactors, J. Micromech. Microeng., 2007, vol. 17, no. 3, pp. 633–641.

    Article  CAS  Google Scholar 

  18. Mies, M.J.M., Rebrov, E.V., Deutz, L., et al., Experimental Validation of the Performance of a Microreactor for the High-Throughput Screening of Catalytic Coatings, Ind. Eng. Chem. Res., 2007, vol. 46, no. 12, pp. 3922–3931.

    Article  CAS  Google Scholar 

  19. Markowz, G., Schirrmeister, S., Albrecht, J., et al., Micro-structured Reactors for Heterogeneously Catalyzed Gas-Phase Reactions on an Industrial Scale, Chem. Eng. Technol., 2005, vol. 28, no. 4, pp. 459–464.

    Article  CAS  Google Scholar 

  20. Yoshida, J.L. and Okamoto, H., Micro Process Engineering-Fundamentals, Devices, Fabrication, and Applications, Kockmann, N., von Brand, O., Fedder, G.K., Hierold, C., Korvink, J.G. and Tabata, O., Eds., Weinheim: Wiley-VCH, 2006, p. 529.

    Google Scholar 

  21. Kawaguchi, T., Miyata, H., Ataka, K., et al., Room-Temperature Swern Oxidations by Using a Microscale Flow System, Angew. Chem., 2005, vol. 44, no. 16, pp. 2413–2416.

    Article  CAS  Google Scholar 

  22. Thayer A.M., Harnessing Microreactions, Chem. Eng. News, 2005. vol. 83, no. 22, pp. 43–52.

    Google Scholar 

  23. Hessel, V., Serra, C., Lowe, H. and Hadziioaimou, G., Polymerizations in Microstructured Reactors: Overview, Chem.-Ing.-Tech., 2005, vol. 77, no. 11, pp. 1693–1714.

    Article  CAS  Google Scholar 

  24. Monzyk, B. and Brophy, J.H., US Patent 7 118 920, 2006.

  25. Lyklema, J., Fundamentals of Interface and Colloid Science, Solid-Liquid Interfaces, London: Academic, 1995. vol. 2, p. 768.

    Google Scholar 

  26. Jovanovic, J., Rebrov, E.V., Nijhuis, T.A. and Schouten, J.C., Smart Microreactors for Phase Transfer Catalysis, Proc. 8th Netherlands Process Technology Symp. (NPS 8), Veldhoven, Netherlands, 2008, p. 91.

  27. Wurziger, H., Pieper, G., Schmelz, M. and Schwesinger, N., German Patent 049 137, 2002.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Rebrov.

Additional information

Original Russian Text © E.V. Rebrov, 2009, published in Khimicheskaya Tekhnologiya, 2009, Vol. 10, No. 10, pp. 595–604.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rebrov, E.V. Use of microtechnologies for intensifying industrial processes. Theor Found Chem Eng 44, 791–799 (2010). https://doi.org/10.1134/S004057951005026X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S004057951005026X

Key words

Navigation