Skip to main content
Log in

Integration of a defocusing nonlinear Schrödinger equation with additional terms

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

The inverse spectral problem method is used to integrate the nonlinear Schrödinger equation with some additional terms in the class of infinite-gap periodic functions. We reveal the evolution of spectral data for a periodic Dirac operator whose coefficients solve the Cauchy problem for a nonlinear Schrödinger equation with some additional terms. Several examples are given to illustrate the algorithm described in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. S. Gardner, J. M. Green, M. D. Kruskal, and R. M. Miura, “Method for solving the Korteveg–de Vries equation,” Phys. Rev. Lett., 19, 1095–1097 (1967).

    Article  ADS  Google Scholar 

  2. L. D. Faddeev, “Properties of the \(S\)-matrix of the one-dimensional Schrödinger equation,” Amer. Math. Soc. Transl. Ser. 2, 65, 139–166 (1967).

    Google Scholar 

  3. V. A. Marchenko, Sturm–Liouville Operators and Applications (Operator Theory: Advances and Applications, Vol. 22), Birkhäuser, Basel (1986).

    Book  Google Scholar 

  4. B. M. Levitan, Inverse Sturm–Liouville Problems, VNU Science Press, Utrecht, The Netherlands (1987).

    Book  Google Scholar 

  5. P. D. Lax, “Integrals of nonlinear equations of evolution and solitary waves,” Comm. Pure Appl. Math., 21, 467–490 (1968).

    Article  MathSciNet  Google Scholar 

  6. V. E. Zakharov and A. B. Shabat, “Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media,” Soviet Phys. JETP, 34, 62–69 (1972).

    ADS  MathSciNet  Google Scholar 

  7. M. Wadati, “The exact solution of the modified Korteweg–de Vries equation,” J. Phys. Soc. Japan, 32, 1681–1681 (1972).

    Article  ADS  Google Scholar 

  8. V. E. Zakharov, L. A. Takhtadzhyan, and L. D. Faddeev, “Complete description of solutions of the ‘sine-Gordon’ equation,” Sov. Phys. Dokl., 19, 824–826 (1974).

    MathSciNet  MATH  Google Scholar 

  9. M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, “Method for solving the sine-Gordon equation,” Phys. Rev. Lett., 30, 1262–1264 (1973).

    Article  ADS  MathSciNet  Google Scholar 

  10. A. R. Its and V. B. Matveev, “Schrödinger operators with finite-gap spectrum and \(N\)-soliton solutions of the Korteweg–de Vries equation,” Theoret. and Math. Phys., 23, 343–355 (1975).

    Article  ADS  Google Scholar 

  11. B. A. Dubrovin and S. P. Novikov, “Periodic and conditionally periodic analogs of the many-soliton solutions of the Korteweg–de Vries equation,” Sov. Phys. JETP, 40, 1058–1063 (1975).

    ADS  MathSciNet  Google Scholar 

  12. A. R. Its, “Inversion of hyperelliptic integrals and integration of non-linear differential equations,” Vestn. Leningr. Univ. Mat. Mekh. Astron., 7, 39–46 (1976).

    MATH  Google Scholar 

  13. O. R. Its and V. P. Kotlyarov, “The explicit formulas for solutions of the Schrödinger nonlinear equation,” Dokl. Akad. Nauk Ukrain. SSR Ser. A, 11, 965–968 (1976).

    MATH  Google Scholar 

  14. A. O. Smirnov, “Elliptic solutions of the nonlinear Schrödinger equation and the modified Korteweg–de Vries equation,” Russian Acad. Sci. Sb. Math., 82, 461–470 (1995).

    MathSciNet  Google Scholar 

  15. A. O. Smirnov, “Elliptic in \(t\) solutions of the nonlinear Schrödinger equation,” Theoret. and Math. Phys., 107, 568–578 (1996).

    Article  ADS  MathSciNet  Google Scholar 

  16. P. G. Grinevich and I. A. Taimanov, “Spectral conservation laws for periodic nonlinear equations of the Melnikov type,” in: Geometry, Topology, and Mathematical Physics. S. P. Novikov’s Seminar: 2006–2007 (American Mathematical Society Translations. Ser. 2, Vol. 224, V. M. Buchstaber and I. M. Krichever, eds.), AMS, Providence, RI (2008), pp. 125–138.

    Google Scholar 

  17. A. B. Khasanov and A. B. Yakhshimuratov, “The Korteweg–de Vries equation with a self-consistent source in the class of periodic functions,” Theoret. and Math. Phys., 164, 1008–1015 (2010).

    Article  ADS  Google Scholar 

  18. A. B. Hasanov and M. M. Hasanov, “Integration of the nonlinear Schrödinger equation with an additional term in the class of periodic functions,” Theoret. and Math. Phys., 199, 525–532 (2019).

    Article  ADS  MathSciNet  Google Scholar 

  19. A. B. Khasanov and M. M. Matjakubov, “Integration of the nonlinear Korteweg–de Vries equation with an additional term,” Theoret. and Math. Phys., 203, 596–607 (2020).

    Article  ADS  MathSciNet  Google Scholar 

  20. A. B. Yakhshimuratov, “The nonlinear Schrödinger equation with a self-consistent source in the class of periodic functions,” Math. Phys. Anal. Geom., 14, 153–169 (2011).

    Article  MathSciNet  Google Scholar 

  21. E. L. Ince, Ordinary Differential Equations, Dover, New York (1956).

    Google Scholar 

  22. P. B. Djakov and B. S. Mityagin, “Instability zones of periodic 1-dimensional Schrödinger and Dirac operators,” Russian Math. Surveys, 61, 663–766 (2006).

    Article  ADS  MathSciNet  Google Scholar 

  23. A. V. Domrin, “Real-analytic solutions of the nonlinear Schrödinger equation,” Trans. Moscow Math. Soc., 75, 173–183 (2014).

    Article  MathSciNet  Google Scholar 

  24. B. M. Levitan and I. S. Sargsyan, Sturm–Liouville and Dirac Operators (Mathematics and Its Applications (Soviet Series), Vol. 59), Springer, Dordrecht (1991).

    Book  Google Scholar 

  25. T. V. Misjura, “Characteristics of the spectra of the periodic and antiperiodic boundary value problems that are generated by the Dirac operator (I),” Theory of Functions, Functional Analysis and their Applications, 30, 90–101 (1978); “Characteristics of the spectra of the periodic and antiperiodic boundary value problems that are generated by the Dirac operator. II,” 31, 102–109 (1979); “Finite-zone Dirac operators,” 33, 107–111 (1980); “Approximation of the periodic potential of the Dirac operator by finite-zone potentials,” 36, 55–65 (1981).

    MathSciNet  Google Scholar 

  26. A. Khasanov and A. Yakhshimuratov, “An analogue of G. Borg’s inverse theorem for the Dirac operator,” Uzbek. Math. J., 3–4, 40–46 (2000).

    MathSciNet  MATH  Google Scholar 

  27. A. B. Khasanov and A. M. Ibragimov, “On the inverse problem for the Dirac operator with periodic potential,” Uzbek. Mat. Zh., 3–4, 48–55 (2001).

    MathSciNet  Google Scholar 

  28. S. Currie, T. T. Roth, and B. A. Watson, “Borg’s periodicity theorems for first-order self-adjoint systems with complex potentials,” Proc. Edinb. Math. Soc., 60, 615–633 (2017).

    Article  MathSciNet  Google Scholar 

  29. I. V. Stankevich, “A certain inverse spectral analysis problem for Hill’s equation,” Dokl. Akad. Nauk SSSR, 192, 34–37 (1970).

    MathSciNet  Google Scholar 

  30. E. Trubowitz, “The inverse problem for periodic potentials,” Comm. Pure. Appl. Math., 30, 321–337 (1977).

    Article  MathSciNet  Google Scholar 

  31. A. B. Khasanov and A. B. Yakhshimuratov, “Inverse problem on the half-line for the Sturm–Liouville operator with periodic potential,” Differ. Equ., 51, 23–32 (2015).

    Article  MathSciNet  Google Scholar 

  32. B. A. Babazhanov and A. B. Khasanov, “Inverse problem for a quadratic pencil of Sturm–Liouville operators with finite-gap periodic potential on the half-line,” Differ. Equ., 43, 737–744 (2007).

    Article  MathSciNet  Google Scholar 

  33. G. Borg, “Eine umkehrung der Sturm–Liouvillschen Eigenwertaufgabe: Bestimmung der Differentialgleichung durch die Eigenwerte,” Acta. Math., 78, 1–96 (1946).

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Khasanov.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 211, pp. 84–104 https://doi.org/10.4213/tmf10073.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muminov, U.B., Khasanov, A.B. Integration of a defocusing nonlinear Schrödinger equation with additional terms. Theor Math Phys 211, 514–531 (2022). https://doi.org/10.1134/S0040577922040067

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922040067

Keywords

Navigation