Skip to main content
Log in

Dispersion relation in the kinetic model of collisionless plasma

  • Research Articles
  • Published:
Theoretical and Mathematical Physics Aims and scope Submit manuscript

Abstract

For the Vlasov equation with a self-consistent field, a connection is established between the dispersion relation and the Schur algebraic complement of the generator of the corresponding dynamical system. An estimate of the instability index is obtained in terms of the Hankel transform of the background distribution of electrons, the sign of which is determined using the saddle point method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

References

  1. A. A. Vlasov, “The vibrational properties of an electron gas,” JETP, 8, 291–318 (1938); Phys. Usp., 10, 721–733 (1968).

    Google Scholar 

  2. N. A. Krall and A. W. Trivelpiece, Principles of Plasma Physics, McGraw-Hill, New York (1973).

    Book  Google Scholar 

  3. A. A. Galeev and R. N. Sudan (eds.), Basic Plasma Physics, North-Holland, Amsterdam (1989).

    Google Scholar 

  4. V. V. Vedenyapin, Boltzmann and Vlasov Kinetic Equations, Fizmatlit, Moscow (2001).

    Google Scholar 

  5. V. V. Kozlov, “The generalized Vlasov kinetic equation,” Russian Math. Surveys, 63, 691–726 (2008).

    Article  ADS  MathSciNet  Google Scholar 

  6. V. V. Vedenyapin, “Boundary value problems for a stationary Vlasov equation,” Dokl. Akad. Nauk SSSR, 290, 777–780 (1986).

    MathSciNet  Google Scholar 

  7. V. V. Vedenyapin and M. A. Negmatov, “On derivation and classification of Vlasov type equations and equations of magnetohydrodynamics. The Lagrange identity, the Godunov form, and critical mass,” J. Math. Sci., 202, 769–782 (2014).

    Article  MathSciNet  Google Scholar 

  8. V. E. Golant, A. P. Zhilinsky, and S. A. Sakharov, Fundamentals of Plasma Physics, Wiley, New York (1980).

    Google Scholar 

  9. A. A. Arsenyev, Lectures on Kinetic Equations, Nauka, Moscow (1992).

    Google Scholar 

  10. A. B. Mikhailovskii, Theory of Plasma Instabilities, Springer, New York (1974).

    Book  Google Scholar 

  11. D. G. Lominadze, Cyclotron Waves in Plasma, Pergamon Press, New York (1981).

    Google Scholar 

  12. V. L. Ginzburg and A. A. Rukhadze, Waves in Magnetoactive Plasma, Nauka, Moscow (1975).

    Google Scholar 

  13. A. I. Akhiezer, Plasma Electrodynamics, Pergamon Press, Oxford (1975).

    Google Scholar 

  14. T. H. Stix, The Theory of Plasma Waves, McGraw-Hill, New York (1962).

    MATH  Google Scholar 

  15. I. B. Bernstein, J. M. Greene, and M. D. Kruskal, “Exact nonlinear plasma oscillations,” Phys. Rev., 108, 546–551 (1957).

    Article  ADS  MathSciNet  Google Scholar 

  16. S. I. Pokhozhaev, “On stationary solutions of the Vlasov–Poisson equations,” Differ. Equ., 46, 530–537 (2010).

    Article  MathSciNet  Google Scholar 

  17. V. V. Vedenyapin, M. A. Negmatov, and N. N. Fimin, “Vlasov-type and Liouville-type equations, their microscopic, energetic and hydrodynamical consequences,” Izv. Math., 81, 505–541 (2017).

    Article  MathSciNet  Google Scholar 

  18. L. D. Landau, “On the vibrations of the electronic plasma,” J. Phys. Acad. Sci. USSR, 10, 25–34 (1946); in: Collected Papers of L. D. Landau (D. ter Haar, ed.), Pergamon Press, Oxford (1965), pp. 445–460.

    MathSciNet  MATH  Google Scholar 

  19. V. P. Maslov and M. V. Fedoryuk, “The linear theory of Landau damping,” Math. USSR-Sb., 55, 437–465 (1986).

    Article  Google Scholar 

  20. C. Mouhot and C. Villani, “On Landau damping,” Acta Math., 207, 29–201 (2011).

    Article  MathSciNet  Google Scholar 

  21. O. Penrose, “Electrostatic instabilities of a uniform non-Maxwellian plasma,” Phys. Fluids, 3, 258–264 (1960).

    Article  ADS  Google Scholar 

  22. A. Hurwitz and R. Courant, Theory of Functions, Nauka, Moscow (1968).

    Google Scholar 

  23. M. V. Fedoryuk, Asymptotics: Integrals and Series, Nauka, Moscow (1987).

    MATH  Google Scholar 

  24. S. A. Stepin and A. G. Tarasov, “Stationary-phase method for Hankel transform of order zero,” Russ. J. Math. Phys., 26, 501–516 (2019).

    Article  MathSciNet  Google Scholar 

  25. A. V. Latyshev and A. A. Yushkanov, “Longitudinal electric conductivity in a quantum plasma with a variable collision frequency in the framework of the Mermin approach,” Theoret. and Math. Phys., 178, 130–141 (2014).

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors are grateful to the referee for the suggestions for improving the presentation and bibliography comments.

Funding

The research was supported by the Russian Foundation for Basic Research (project No. 19-01-00474).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Stepin.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated from Teoreticheskaya i Matematicheskaya Fizika, 2022, Vol. 210, pp. 442-454 https://doi.org/10.4213/tmf10175.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stepin, S.A., Tarasov, A.G. Dispersion relation in the kinetic model of collisionless plasma. Theor Math Phys 210, 386–397 (2022). https://doi.org/10.1134/S0040577922030096

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0040577922030096

Keywords

Navigation