Skip to main content
Log in

Jupiter’s Trojans: Physical properties and origin

  • Published:
Solar System Research Aims and scope Submit manuscript

Abstract

The current concepts on the physical properties of the Jovian Trojans are reviewed in the paper. The distributions of rotation periods and light-curve amplitudes, the features of the phase dependencies of brightness, and the available data on the surface composition, density, diameters, and albedo of the Trojans are analyzed. The history of the discovery of Trojans, their dynamical properties, and the hypotheses on their origin are also briefly considered. A framework of the unsolved problems in the study of this population of small bodies is outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul’myanov, T.R. and Zagretdinov, R.V., Asteroids libration motion near mean motions commensurability. Intermediate orbits, Kinemat. Fiz. Nebesn. Tel, 1994, vol. 4, pp. 34–43.

    Google Scholar 

  • Alexandersen, M., Gladman, B., Greenstreet, S., Kavelaars, J.J., Petit, J.-M., and Gwyn, S., A Uranian Trojan and the frequency of temporary giant-planet coorbitals, Science, 2013, vol. 341, pp. 994–997.

    ADS  Google Scholar 

  • Barucci, M.A., Cruikshank, D.P., Mottola, S., and Lazzarin, M., Physical properties of Trojan and Centaur asteroids, in Asteroids III, Bottke, W.F., Jr., Ed., Tucson: Univ. Arizona Press, 2002, pp. 273–287.

    Google Scholar 

  • Beaugé, C. and Roig, F.A., Semianalytical model for the motion of the Trojan asteroids: proper elements and families, Icarus, 2001, vol. 153, pp. 391–415.

    ADS  Google Scholar 

  • Belskaya, I.N., Surface optical properties for asteroids, Centauruses and Kuiper belt bodies surfaces, Doctoral Sci. (Phys.-Math.) Dissertation, Kharkov, 2007.

    Google Scholar 

  • Bendjoya, P., Cellino, A., Di Martino, D., and Saba, L., Spectroscopic observations of Jupiter Trojans, Icarus, 2004, vol. 168, pp. 374–384.

    ADS  Google Scholar 

  • Binzel, R.P. and Sauter, L.M., Trojan, Hilda, and Cybele asteroids: new lightcurve observations and analysis, Icarus, 1992, vol. 95, pp. 222–238.

    ADS  Google Scholar 

  • Bowell, E., Hapke, B., and Domingue, D., Application of photometric models to asteroids, in Asteroids II, Binzel, R.P., et al., Eds., Tucson: Univ. Arizona Press, 1989, pp. 524–556.

    Google Scholar 

  • Chapman, C.R., Morrison, D., and Zellner, B., Surface properties of asteroids-a synthesis of polarimetry, radiometry, and spectrophotometry, Icarus, 1975, vol. 25, pp. 104–130.

    ADS  Google Scholar 

  • Chebotarev, G.A., New types of motions for Trojan group planets, Astron. Zh., 1973, vol. 50, no. 5, pp. 1071–1075.

    ADS  Google Scholar 

  • Chiang, E.I., Jordan, A.B., Millis, R.L., et al., Resonance occupation in the Kuiper Belt: case examples of the 5: 2 and Trojan resonances, Astron. J., 2003, vol. 126, pp. 430–443.

    ADS  Google Scholar 

  • Ciesla, F.J. and Cuzzi, J.N., The evolution of the water distribution in a viscous protoplanetary disk, Icarus, 2006, vol. 181, pp. 178–204.

    ADS  Google Scholar 

  • Connors, M.G., Wiegert, P., and Veillet, C., Discovery of an Earth Trojan asteroid, Nature, 2011, vol. 475, pp. 481–483.

    ADS  Google Scholar 

  • Cruikshank, D.P., Radii and albedos of four Trojan asteroids and Jovian satellites 6 and 7, Icarus, 1977, vol. 30, pp. 224–230.

    ADS  Google Scholar 

  • Cruikshank, D.P., Dall’Ore, C.M., Roush, T.L., et al., Constraints on the composition of Trojan asteroid 624 Hektor, Icarus, 2001, vol. 153, pp. 348–360.

    ADS  Google Scholar 

  • Cruikshank, D.P., Wegryn, E., and Dalle Ore, C.M., Hydrocarbons on Saturn’s satellites Iapetus and Phoebe, Icarus, 2008, vol. 193, pp. 334–343.

    ADS  Google Scholar 

  • Dahlgren, M., A study of Hilda asteroids. III. Collisional velocities and collision frequencies of Hilda asteroids, Astron. Astrophys., 1998, vol. 336, pp. 1056–1064.

    ADS  Google Scholar 

  • Davis, D.R., Durda, D.D., and Marzari, F., Collisional evolution of small-body populations, in Asteroids III, Bottke, W.F., Jr., Ed., Tucson: Univ. Arizona Press, 2002, pp. 545–558.

    Google Scholar 

  • Degewij, J. and van Houten, C.J., Distant asteroids and outer Jovian satellites, in Asteroids, Gehrels, T., Ed., Tucson: Univ. Arizona Press, 1979, pp. 417–435.

    Google Scholar 

  • Descamps, P., Roche figures of doubly synchronous asteroids, Planet. Space Sci., 2008, vol. 56, pp. 1839–1846.

    ADS  Google Scholar 

  • Dotto, E., Fornasier, S., Barucci, M.A., et al., The surface composition of Jupiter Trojans, Icarus, 2006, vol. 183, pp. 420–434.

    ADS  Google Scholar 

  • Dotto, E., Emery, J.P., Barucci, M.A., et al., De Troianis: the Trojans in the planetary system, in The Solar System beyond Neptune, Barucci, M.A., Ed., Tucson: Univ. Arizona Press, 2008, pp. 383–395.

    Google Scholar 

  • Dumas, C., Owen, T., and Barucci, M.A., Near-infrared spectroscopy of low-albedo surfaces of the solar system: search for the spectral signature of dark material, Icarus, 1998, vol. 133, pp. 221–232.

    ADS  Google Scholar 

  • Dunlap, J.L. and Gehrels, T., Minor planets. III. Light-curves of a Trojan asteroid, Astron. J., 1969, vol. 74, pp. 797–803.

    Google Scholar 

  • Emery, J.P. and Brown, R.H., Constraints on the surface composition of Trojan asteroids from near-infrared (0.8–4.0 μm) spectroscopy, Icarus, 2003, vol. 164, p. 104–121.

    ADS  Google Scholar 

  • Emery, J.P. and Brown, R.H., The surface composition of Trojan asteroids: constraints set by scattering theory, Icarus, 2004, vol. 170, pp. 131–152.

    ADS  Google Scholar 

  • Emery, J.P., Burr, D.M., and Cruikshank, D.P., Near-infrared spectroscopy of Trojan asteroids: evidence for two compositional groups, Astron. J., 2011, vol. 141, article ID 25.

  • Fernández, J.A. and Ip, W.-H., Some dynamical aspects of the accretion of Uranus and Neptune—the exchange of orbital angular momentum with planetesimals, Icarus, 1984, vol. 58, pp. 109–120.

    ADS  Google Scholar 

  • Fernández, Y.R., Sheppard, S.S., and Jewitt, D.C., The albedo distribution of Jovian Trojan asteroids, Astron. J., 2003, vol. 126, pp. 1563–1574.

    ADS  Google Scholar 

  • Fernández, Y.R., Jewitt, D., and Ziffer, J.E., Albedos of small Jovian Trojans, Astron. J., 2009, vol. 138, pp. 240–250.

    ADS  Google Scholar 

  • Fitzsimmons, A., Dahlgren, M., Lagerkvist, C.-I., et al., A spectroscopic survey of D-type asteroids, Astron. Astrophys., 1994, vol. 282, pp. 634–642.

    ADS  Google Scholar 

  • Fleming, H.J. and Hamilton, D.P., On the origin of the Trojan asteroids: effects of Jupiter’s mass accretion and radial migration, Icarus, 2000, vol. 148, pp. 479–493.

    ADS  Google Scholar 

  • Fornasier, S., Dotto, E., Marzari, F., et al., Visible spectroscopic and photometric survey of L5 Trojans: investigation of dynamical families, Icarus, 2004, vol. 172, pp. 221–232.

    ADS  Google Scholar 

  • Fornasier, S., Dotto, E., and Hainaut, O., Visible spectroscopic and photometric survey of Jupiter Trojans: final results on dynamical families, Icarus, 2007, vol. 190, pp. 622–642.

    ADS  Google Scholar 

  • French, L.M., Rotation properties of four L5 Trojan asteroids from CCD photometry, Icarus, 1987, vol. 72, pp. 325–341.

    ADS  Google Scholar 

  • Gomes, R.S., Dynamical effects of planetary migration on the primordial asteroid belt, Astron. J., 1997, vol. 114, pp. 396–401.

    ADS  Google Scholar 

  • Gomes, R.S., Dynamical effects of planetary migration on primordial Trojan-type asteroids, Astron. J., 1998, vol. 116, pp. 2590–2597.

    ADS  Google Scholar 

  • Gomes, R.S., Morbidelli, A., and Levison, H.F., Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU?, Icarus, 2004, vol. 170, pp. 492–507.

    ADS  Google Scholar 

  • Gomes, R., Levison, H.F., Tsiganis, K., and Morbidelli, A., Origin of the cataclysmic late heavy bombardment period of the terrestrial planets, Nature, 2005, vol. 435, pp. 466–469.

    ADS  Google Scholar 

  • Gradie, J.C. and Veverka, J., The composition of the Trojan asteroids, Nature, 1980, vol. 283, pp. 840–842.

    ADS  Google Scholar 

  • Gradie, J.C. and Tedesco, E.F., Compositional structure of the asteroid belt, Science, 1982, vol. 216, pp. 1405–1407.

    ADS  Google Scholar 

  • Grav, T., Mainzer, A.K., Bauer, J., et al., WISE/NEOWISE observations of the Jovian Trojans: preliminary results, Astrophys. J., 2011, vol. 742, pp. 40–49.

    ADS  Google Scholar 

  • Hahn, J.M. and Malhotra, R., Orbital evolution of planets embedded in a planetesimal disk, Astron. J., 1999, vol. 117, pp. 3041–3053.

    ADS  Google Scholar 

  • Hahn, J.M. and Malhotra, R., Neptune’s migration into a stirred-up Kuiper belt: a detailed comparison of simulations to observations, Astron. J., 2005, vol. 130, pp. 2392–2414.

    ADS  Google Scholar 

  • Harris, A.W., A thermal model for near-Earth asteroids, Icarus, 1998, vol. 131, pp. 291–301.

    ADS  Google Scholar 

  • Hartmann, W.K. and Cruikshank, D., The nature of Trojan asteroid 624 Hektor, Icarus, 1978, vol. 36, pp. 353–366.

    ADS  Google Scholar 

  • Innanen, K.A., Mikkola, S., Bowell, E., Muinonen, K., and Shoemaker, E.M., 1990 MB: the first Mars Trojan, Proc. Int. Conf. on Asteroids, Comets, Meteors, Houston, 1991, p. 96.

    Google Scholar 

  • Ivezic, Z., Tabachnik, S., Rafikov, R., et al., Solar system objects observed in the Sloan digital sky survey commissioning data, Astron. J., 2001, vol. 122, pp. 2749–2784.

    ADS  Google Scholar 

  • Jewitt, D.C. and Luu, J.X., CCD spectra of asteroids. II. The Trojans as spectral analogs of cometary nuclei, Astron. J., 1990, vol. 100, pp. 933–944.

    ADS  Google Scholar 

  • Jewitt, D., Trujillo, C., and Luu, J., Population and size distribution of small Jovian Trojan asteroids, Astron. J., 2000, vol. 120, pp. 1140–1147.

    ADS  Google Scholar 

  • Jones, T.D., Lebofsky, L.A., Lewis, J.S., and Marley, M.S., The composition and origin of the C, P, and D asteroids-water as a tracer of thermal evolution in the outer belt, Icarus, 1990, vol. 88, pp. 172–192.

    ADS  Google Scholar 

  • Kary, D.M. and Lissauer, J.J., Nebular gas drag and planetary accretion: II. planet on an eccentric orbit, Icarus, 1995, vol. 117, pp. 1–24.

    ADS  Google Scholar 

  • Kuiper, G.P., Fujita, Y., Gehrels, T., et al., Survey of asteroids, Astophys. J. Suppl. Ser., 1958, vol. 3, p. 32.

    Google Scholar 

  • Lacerda, P. and Jewitt, D., Densities of solar system objects from their rotational lightcurves, Astron. J., 2007, vol. 133, pp. 1393–1408.

    ADS  Google Scholar 

  • Lagerkvist, C.-I. and Sjolander, N.-G., Photographic photometry of asteroids with Schmidt telescopes. II. Observation of 11 asteroids during 1977 and 1978, Acta Astron., 1978, vol. 29, pp. 455–461.

    ADS  Google Scholar 

  • Lagrange, J.-L., Essai sur le Problème des Trois Corps, in Oeuvres de Lagrange, Tome sixime, Serret, J.-A., Ed., Paris: Gauthiers-Villars, 1873, pp. 229–331.

    Google Scholar 

  • Lazzarin, M., Barbieri, C., and Barucci, M.A., Visible spectroscopy of dark, primitive asteroids, Astron. J., 1995, vol. 110, pp. 3058–3072.

    ADS  Google Scholar 

  • Lazzaro, D., Angeli, C.A., Carvano, J.M., et al., S3OS2: the visible spectroscopic survey of 820 asteroids, Icarus, 2004, vol. 172, pp. 179–220.

    ADS  Google Scholar 

  • Lebofsky, L.A. and Spencer, J.R., Radiometry and a thermal modeling of asteroids, in Asteroids II, Binzel, R.P., et al., Eds., Tucson: Univ. Arizona Press, 1989, pp. 128–147.

    Google Scholar 

  • Levison, H., Shoemaker, E.M., and Shoemaker, C.S., The dispersal of the Trojan asteroid swarm, Nature, 1997, vol. 385, pp. 42–44.

    ADS  Google Scholar 

  • Levison, H.F., Morbidelli, A., Vanlaerhoven, C., Gomes, R., and Tsiganis, K., Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune, Icarus, 2008, vol. 196, pp. 258–273.

    ADS  Google Scholar 

  • Luu, J., Jewitt, D., and Cloutis, E., Near-infrared spectroscopy of primitive solar system objects, Icarus, 1994, vol. 109, pp. 133–144.

    ADS  Google Scholar 

  • Lykawka, P.S. and Mukai, T., An outer planet beyond Pluto and the origin of the Trans-Neptunian Belt architecture, Astron. J., 2008, vol. 135, no. 4, pp. 1161–1200.

    ADS  Google Scholar 

  • Lykawka, P.S. and Horner, J., The capture of Trojan asteroids by the giant planets during planetary migration, Mon. Notic. Roy. Astron. Soc., 2010, vol. 405, no. 2, pp. 1375–1383.

    ADS  Google Scholar 

  • Malhotra, R., The origin of Pluto’s peculiar orbit, Nature, 1993, vol. 365, pp. 819–821.

    ADS  Google Scholar 

  • Malhotra, R., The origin of Pluto’s orbit: implications for the Solar system beyond Neptune, Astron. J., 1995, vol. 110, pp. 420–429.

    ADS  Google Scholar 

  • Mann, R., Jewitt, D., and Lacerda, P., Fraction of contact binary Trojan asteroids, Astron. J., 2007, vol. 134, pp. 1133–1144.

    ADS  Google Scholar 

  • Marchis, F., Hestroffer, D., Descamps, P., et al., A low density of 0.8 g cm−3 the Trojan binary asteroid 617 Patroclus, Nature Lett., 2006, vol. 439/2, pp. 565–567.

    ADS  Google Scholar 

  • Markeev, A.P., Tochki libratsii v nebesnoi mekhanike i kosmodinamike (Libration Points in Celestial Mechanics and Space Dynamics), Moscow: Nauka, 1978.

    Google Scholar 

  • Marzari, F. and Scholl, H., Capture of Trojans by a growing proto-Jupiter, Icarus, 1998a, vol. 131, pp. 41–51.

    ADS  Google Scholar 

  • Marzari, F. and Scholl, H., The growth of Jupiter and Saturn and the capture of Trojans, Astron. Astrophys., 1998b, vol. 339, pp. 278–285.

    ADS  Google Scholar 

  • Marzari, F. and Scholl, H., The role of secular resonances in the history of Trojans, Icarus, 2000, vol. 146, pp. 232–239.

    ADS  Google Scholar 

  • Marzari, F., Scholl, H., Murray, C., et al., Origin and evolution of Trojan asteroids, in Asteroids III, Bottke, W.F., Jr., Ed., Tucson: Univ. Arizona Press, 2002, pp. 725–738.

    Google Scholar 

  • Merline, W.J., Close, L.M., and Menard, F., et al., Search for asteroid satellites, Bull. Am. Astron. Soc., 2001, vol. 33, p. 1133.

    ADS  Google Scholar 

  • Merline, W.J., Weidenschilling, S.J., Durda, D.D., et al., Asteroids do have satellites, in Asteroids III, Bottke, W.F., Jr., Ed., Tucson: Univ. Arizona Press, 2002, pp. 289–312.

    Google Scholar 

  • Michtchenko, T.A., Beaugé, C., and Roig, F., Planetary migration and the effects of mean motion resonances on Jupiter’s Trojan asteroids, Astron. J., 2001, vol. 122, pp. 3485–3491.

    ADS  Google Scholar 

  • Milani, A., The Trojan asteroid belt: proper elements, stability, chaos, and families, Celest. Mech. Dyn. Astron., 1993, vol. 57, pp. 59–94.

    ADS  MathSciNet  Google Scholar 

  • Milani, A. and Knezevic, Z., Asteroid proper elements and the dynamical structure of the asteroid main belt, Icarus, 1994, vol. 107, pp. 219–254.

    ADS  Google Scholar 

  • Morbidelli, A., Levison, H.F., Tsiganis, K., and Gomes, R., Chaotic capture of Jupiter’s Trojan asteroids in the early solar system, Nature Lett., 2005, vol. 435, pp. 462–465.

    ADS  Google Scholar 

  • Morrison, D., Asteroid sizes and albedos, Icarus, 1977, vol. 31, pp. 185–220.

    ADS  Google Scholar 

  • Mottola, S., Di Martino, M., and Erikson, A., Rotational properties of Jupiter Trojans. I. Light curves of 80 objects, Astron. J., 2011, vol. 141, p. 170.

    ADS  Google Scholar 

  • Noll, K.S., Solar system binaries, Proc. 229th IAU Symp., Paris, 2005, pp. 301–318.

    Google Scholar 

  • O’Brien, D.O. and Morbidelli, A., The collisional evolution of Trojan asteroids-possible origin of the L4–L5 asymmetry, Asteroids, Comets, Meteors, 2008.

    Google Scholar 

  • Peale, S.J., The effect of the nebula on the Trojan precursors, Icarus, 1993, vol. 106, pp. 308–322.

    ADS  Google Scholar 

  • Petit, J.-M., Morbidelli, A., and Chambers, J., The primordial excitation and clearing of the asteroid belt, Icarus, 2001, vol. 153, pp. 338–347.

    ADS  Google Scholar 

  • Pollack, J.B., Hubickyj, O., Bodenheimer, P., et al., Formation of the giant planets by concurrent accretion of solids and gas, Icarus, 1996, vol. 124, pp. 62–85.

    ADS  Google Scholar 

  • Rabe, E., The Trojans as escaped satellites of Jupiter, Astron. J., 1954, vol. 59, pp. 433–438.

    ADS  Google Scholar 

  • Richardson, D.C. and Walsh, K.J., Binary minor planets, Annu. Rev. Earth Planet. Sci., 2006, vol. 34, pp. 47–81.

    ADS  Google Scholar 

  • Roig, F., Ribeiro, A.O., and Gil-Hutton, R., Taxonomy of asteroid families among the Jupiter Trojans: comparison between spectroscopic data and the Sloan Digital Sky Survey colors, Astron. Astrophys., 2008, vol. 483, pp. 911–931.

    ADS  Google Scholar 

  • Ryabov, Yu.A., Whether it is possible to generate a theory of Trojans motion based on the hypothesis on they closeness to libration points, Astron. Zh., 1956, vol. 33, no. 6, pp. 936–952.

    Google Scholar 

  • Sagan, C. and Khare, B.N., Tholins—organic chemistry of interstellar grains and gas, Nature, 1979, vol. 277, pp. 102–107.

    ADS  Google Scholar 

  • Schaefer, M.W., Schaefer, B.E., Rabinowitz, D.L., and Tourtellotte, S.W., Phase curves of nine Trojan asteroids over a wide range of phase angles, Icarus, 2010, vol. 207, pp. 699–713.

    ADS  Google Scholar 

  • Sheppard, S.S. and Jewitt, D., Extreme Kuiper Belt object 2001 QG298 and the fraction of contact binaries, Astron. J., 2004, vol. 127, pp. 3023–3033.

    ADS  Google Scholar 

  • Shevchenko, V.G., Chiorny, V.G., Kalashnikov, A.V., et al., Magnitude-phase dependences for three asteroids, Astron. Astrophys., 1996, vol. 115, suppl., pp. 475–479.

    ADS  Google Scholar 

  • Shevchenko, V.G., Chiorny, V.G., Gaftonyuk, N.M., et al., Asteroid observations at low phase angles. III. Brightness behavior of dark asteroids, Icarus, 2008, vol. 196, pp. 601–611.

    ADS  Google Scholar 

  • Shevchenko, V.G., Krugly, Yu.N., Belskaya, I.N., et al., Do Trojan asteroids have the brightness opposition effect?, Proc. 40th Lunar and Planet. Sci. Conf., Houston, 2009.

    Google Scholar 

  • Shevchenko, V.G., Belskaya, I.N., Slyusarev, I.G., et al., Opposition effect of Trojan asteroids, Icarus, 2012, vol. 217, pp. 202–208.

    ADS  Google Scholar 

  • Shoemaker, E.M., Shoemaker, C.S., and Wolfe, R.F., Trojan asteroids: populations, dynamical structure and origin of the L4 and L5 swarms, in Asteroids II, Binzel, R.P., et al., Eds., Tucson: Univ. Arizona Press, 1989, pp. 487–523.

    Google Scholar 

  • Slyusarev, I.G., Shevchenko, V.G., Belskaya, I.N., et al., Magnitude phase angle dependences of Jupiter Trojans and Hilda asteroids, Proc. 43rd Lunar and Planet. Sci. Conf., Houston, 2012.

    Google Scholar 

  • Smith, D.W., Johnson, P.E., and Shorthill, R.W., Spectrophotometry of J8, J9, and four Trojan asteroids from 0.32 to 1.05 μm, Icarus, 1981, vol. 48, pp. 108–113.

    ADS  Google Scholar 

  • Stevenson, D.J. and Lunine, J.I., Rapid formation of Jupiter by diffuse redistribution of water vapor in the solar nebula, Icarus, 1988, vol. 75, pp. 146–155.

    ADS  Google Scholar 

  • Storrs, A., Weiss, B., Zellner, B., et al., Imaging observations of asteroids with Hubble space telescope, Icarus, 1999, vol. 137, pp. 260–268.

    ADS  Google Scholar 

  • Storrs, A.D., Dunne, C., Conan, J.-M., et al., A closer look at main belt asteroids 1: WF/PC images, Icarus, 2005, vol. 173, pp. 409–416.

    ADS  Google Scholar 

  • Szabó, Gy.M., Ivezic, Z., Juric, M., and Lupton, R., The properties of Jovian Trojan asteroids listed in SDSS Moving Object Catalog 3, Mon. Notic. Roy. Astron. Soc., 2007, vol. 377, pp. 1393–1406.

    ADS  Google Scholar 

  • Tanga, P., Hestroffer, D., Cellino, A., et al., Asteroid observations with the Hubble Space telescope. II. Duplicity search and size measurements for 6 asteroids, Astron. Astrophys., 2003, vol. 401, pp. 733–741.

    ADS  Google Scholar 

  • Tedesco, E.F., Asteroids magnitudes, UBV colors, and IRAS albedos and diameters, in Asteroids II, Binzel, R.P., et al., Eds., Tucson: Univ. Arizona Press, 1989, pp. 1090–1138.

    Google Scholar 

  • Tedesco, E.F., Noah, P.V., Noah, M., and Price, S.D., The supplemental IRAS minor planet survey, Astron. J., 2002, vol. 123, pp. 1056–1085.

    ADS  Google Scholar 

  • Tsiganis, K., Gomes, R., Morbidelli, A., and Levison, H.F., Origin of the orbital architecture of the giant planets of the Solar System, Nature, 2005, vol. 435, pp. 459–461.

    ADS  Google Scholar 

  • Usui, F., Kuroda, D., Müller, T.G., et al., Asteroid catalog using Akari: AKARI/IRC mid-infrared asteroid survey, Publ. Astron. Soc. Jpn., 2011, vol. 63, no. 5, pp. 1117–1138.

    ADS  Google Scholar 

  • van Houten, C.J., van Houten-Groeneveld, I., and Gehrels, T., Minor planets and related objects V: the density of Trojans near the preceding Lagrangian point, Astron. J., 1970, vol. 75, pp. 659–662.

    ADS  Google Scholar 

  • Vilas, F., Larson, S.M., Hatch, E.C., et al., CCD reflectance spectra of selected asteroids. II. Low-albedo asteroid spectra and data extraction techniques, Icarus, 1993, vol. 105, pp. 67–78.

    ADS  Google Scholar 

  • Warner, B.D., Harris, A.W., and Pravec, P., The asteroid lightcurve database, Icarus, 2009, vol. 202, pp. 134–146.

    ADS  Google Scholar 

  • Wetherill, G.W., An alternative model for the formation of the asteroids, Icarus, 1992, vol. 100, pp. 307–325.

    ADS  Google Scholar 

  • Yang, B. and Jewitt, D., Spectroscopic search for water ice on Jovian Trojan asteroids, Bull. Am. Astron. Soc., 2006, vol. 38, p. 50.

    Google Scholar 

  • Yang, B. and Jewitt, D., A near-infrared search for silicates in Jovian Trojan asteroids, Astron. J., 2011, vol. 141, article ID 95.

  • Yoder, C.F., Notes on the origin of the Trojan asteroids, Icarus, 1979, vol. 40, pp. 341–344.

    ADS  Google Scholar 

  • Yoshida, F., Nakamura, T., Watanabe, J., et al., Size and spatial distributions of sub-km Main-Belt Asteroids, Publ. Astron. Soc. Jpn., 2003, vol. 55, pp. 701–715.

    ADS  Google Scholar 

  • Yoshida, F. and Nakamura, T., Size distribution of faint Jovian L4 Trojan asteroids, Astron. J., 2005, vol. 130, pp. 2900–2911.

    ADS  Google Scholar 

  • Yoshida, F. and Nakamura, T., A comparative study of size distributions for small L4 and L5 Jovian Trojans, Publ. Astron. Soc. Jpn., 2008a, vol. 60, pp. 297–301.

    ADS  Google Scholar 

  • Yoshida, F. and Nakamura, T., A new surface density model of Jovian Trojans around triangular libration points, Publ. Astron. Soc. Jpn., 2008b, vol. 60, pp. 293–296.

    Google Scholar 

  • Zagretdinov, R.V., Libration motion of Trojan asteroids by considering orbits inclination, Kinemat. Fiz. Nebesn. Tel, 1986, vol. 2, no. 4, pp. 77–80.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © I.G. Slyusarev, I.N. Belskaya, 2014, published in Astronomicheskii Vestnik, 2014, Vol. 48, No. 2, pp. 149–168.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Slyusarev, I.G., Belskaya, I.N. Jupiter’s Trojans: Physical properties and origin. Sol Syst Res 48, 139–157 (2014). https://doi.org/10.1134/S0038094614020063

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0038094614020063

Keywords

Navigation