Skip to main content
Log in

Joint Model for the Phase-Structural Deformation of Shape Memory Alloys

  • DEFORMATION AND FRACTURE MECHANICS
  • Published:
Russian Metallurgy (Metally) Aims and scope

Abstract

A joint model is proposed to describe the inelastic deformation of shape memory alloys during phase and structural transformations. This model takes into account the fundamental difference between these two mechanisms and the influence of the first mechanism on the second. In contrast to the well-known analogs, this model allows the phase-structural deformation arc length (analog of the Odqvist parameter in the theory of plasticity) to exceed the crystallographic deformation intensity of a phase transition for the processes of nonmonotonic loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. A. A. Movchan and S. A. Kazarina, “Shape memory materials as a subject of the mechanics of a deformed solid body: experimental investigations, analytical relationships, and solution of boundary-value problems,” Fizich. Mezomekh. 15 (1), 105–116 (2012).

    Google Scholar 

  2. A. A. Movchan, A. L. Sil’chenko, and S. A. Kazarina, “Experimental study and theoretical simulation of the cross hardening effect in shape memory alloys,” Deform. Razrushenie Mater., No. 3, 20–27 (2017).

  3. K. A. Tikhomirova, “Experimental and theoretical investigation of the relation between the phase and structural strains in shape memory alloys,” Vestn. PNIPU. Mekhan., No. 1, 40–57 (2018).

  4. K. A. Tikhomirova, “Development and numerical implementation of a one-dimensional phenomenological model for the phase deformation in shape memory alloys,” Vychisl. Mekh. Sploshn. Sred 9 (2), 192–206 (2016).

    Google Scholar 

  5. C. Cisse, W. Zaki, and T. B. Zineb, “A review of constitutional models and modeling techniques for shape memory alloys,” Int. J. Plast. 76, 244–284 (2016).

    Article  CAS  Google Scholar 

  6. X. Gu, W. Zaki, C. Morin, Z. Moumni, and W. Zhang, “Time integration and assessment of a model for shape memory alloys considering multiaxial nonproportional loading cases,” Int. J. Solids Struct. 54, 82–99 (2015).

    Article  CAS  Google Scholar 

  7. X. Gu, W. Zhang, W. Zaki, and Z. Moumni, “An extended thermomechanically coupled 3D rate-dependent model for pseudoelastic SMAs under cyclic loading,” Smart Mater. Struct. 26, art. 095047 (2017).

    Article  Google Scholar 

  8. S. Jape, T. Baxevanis, and D. C. Lagoudas, “On the fracture toughness and stable crack growth in shape memory alloy actuators in the presence of transformation-induced plasticity,” Int. J. Fracture. 209 (1, 2), 117–130 (2018).

  9. I. V. Mishustin, “Model for the deformation of a shape memory alloy with allowance for different resistances,” Mekh. Komposit. Mater. Konstr. 23 (4), 484–498 (2017)

    Google Scholar 

  10. I. V. Mishustin, “Nanostructural model of shape memory alloy with resistance asymmetry behavior,” Nanoscience and Technology 9 (2), 165–181 (2018)

    Article  Google Scholar 

  11. A. A. Movchan, “Phenomenological model of changes in phase-structural strains in shape memory alloys,” Izv. Ross. Akad. Nauk, Mekhan. Tverd. Tela, No. 4, 58–70 (2020).

    Google Scholar 

  12. Z. P. Kamentseva, S. L. Kuz’min, and V. A. Likhachev, “Strain hardening of titanium nickelide,” Probl. Prochn., No. 9, 87–91 (1980).

  13. K. N. Melton and O. Mercier, “Fatigue of TiNi thermoelastic martensites,” Acta Metall. 27 (1), 137–144 (1979).

    Article  CAS  Google Scholar 

  14. R. J. Wasilevski, “Martensitic transformation and fatigue strength in TiNi,” Scr. Metallurg. 5 (3), 207–211 (1974).

    Article  Google Scholar 

  15. Y. Liu, Z. Xie, J. Van Humbeeck, and L. Delaey, “Asymmetry of stress-strains curves under tension and compression for NiTi shape memory alloys,” Acta Mater. 46 (12), 4325–4338 (1998).

    Article  CAS  Google Scholar 

  16. A. A. Movchan, “Model of the influence of the phase mechanism of deformation on the structural mechanism in shape memory alloys,” Deform. Razrushenie Mater., No. 7, 14–23 (2019).

  17. I. V. Mishustin and A. A. Movchan, “Analog of the theory of plasticity for the description of the martensite inelasticity deformation in shape memory alloys,” Izv. Ross. Akad. Nauk, Mekhan. Tverd. Tela, No. 2, 78–95 (2015)

    Google Scholar 

  18. Y. Suzuki, Y. Xu, S. Morito, K. Otsuka, and K. Mitose, “Effect of boron addition on microstructure and mechanical properties of Ti–Td–Ni high-temperature shape memory alloys,” Mater. Lett. 36, 85–94 (1998).

    Article  CAS  Google Scholar 

  19. X. D. Wu, G. J. Sun, and J. S. Wu, “The nonlinear relationship between transformation strain and applied stress for nitinol,” Mater. Lett. 57, 1334–1338 (2003).

    Article  CAS  Google Scholar 

  20. A. Ishida and M. Sato, “Thickness effect on shape memory behavior of Ti–50.0 at % Ni thin film,” Acta Mater. 51, 5571–5578 (2003).

    Article  CAS  Google Scholar 

  21. S. M. Tan, V. H. No, and S. Miyazaki, “Ti-content and annealing temperature dependence of deformation characteristics of TixNi(92 – x)Cu8 shape memory alloys,” Acta Mater. 46 (8), 2799–2740 (1998).

    Article  Google Scholar 

  22. B. Garby, C. Lexcellent, V. N. No, and S. Miyazaki, “Thermodynamic modeling of the recovery strains of sputter-deposited shape memory alloys Ti–Ni and Ti–Ni–Cu thin films,” Thin Solids Films 372, 118–133 (2000).

    Article  Google Scholar 

  23. J. Uchil, K. K. Mahesh, and K. G. Kumar, “Electrical resistivity and strain recovery studies on the effect of thermal cycling under constant stress on R-phase in NiTi shape memory alloy,” Physica B. 324, 419–428 (2002).

    Article  CAS  Google Scholar 

  24. A. A. Movchan, S. A. Kazarina, and A. L. Sil’chenko, “Experimental identification of a model of nonlinear deformation of shape memory alloys during phase and structural transformations,” Deform. Razrushenie Mater., No. 12, 2–11 (2018).

  25. J. A. Shaw and S. Kyriakides, “Thermomechanical aspects of TiNi,” J. Mech. Phys. Solids 43 (8), 1243–1281 (1995).

    Article  CAS  Google Scholar 

  26. Y. Liu, J. Van Humbeeck, R. Stalmans, and L. Delaey, “Some aspects of properties of TiNi shape memory alloy,” J. Alloys Compd. 247, 115–121 (1997).

    Article  CAS  Google Scholar 

  27. Y. Liu, Z. Xie, J. Van Humbeeck, and L. Delaey, “Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet,” Acta Mater. 47 (2), 645–660 (1999).

    Article  CAS  Google Scholar 

  28. R. J. Wasilevski, “The effect of applied stress on the martensitic transformation in TiNi,” Metall. Trans. 2 (11), 2973–2981 (1971).

    Article  Google Scholar 

  29. A. A. Movchan, S. A. Kazarina, and A. L. Sil’chenko, “Cross hardening effect in a shape memory alloy during compression,” Deform. Razrushenie Mater., No. 4, 2–9 (2019).

Download references

Funding

This work was carried out within the framework of state budget project AAAA-A19-119012290118-3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Movchan.

Additional information

Translated by K. Shakhlevich

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Movchan, A.A. Joint Model for the Phase-Structural Deformation of Shape Memory Alloys. Russ. Metall. 2021, 333–340 (2021). https://doi.org/10.1134/S0036029521040212

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036029521040212

Keywords:

Navigation