Skip to main content
Log in

Effect of Structural and Optical Isomerism of Aliphatic Dipeptides on the Enthalpic Characteristics of Interaction with Xylitol in Water

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Solution calorimetry is used to obtain enthalpies of dissolution ΔsolHm of L-α-alanyl-L-α-alanine, DL-α-alanyl-DL-α-alanine, and β-alanyl-β-alanine in aqueous solutions with xylitol at concentrations of the polyatomic alcohol up to 1 mol/kg of solvent. Standard values of enthalpies of dissolution ΔsolH0 and transfer ΔtrH0 of dipeptides from water to aqueous solutions of xylitol are calculated. The calculated enthalpic coefficients of pairwise interaction between dipeptides and molecules of the polyatomic alcohol have positive and negative values. The effect the isomerism of the peptides has on the enthalpic characteristics of their interaction with xylitol in aqueous solutions is determined. An analysis is performed of the effect different types of interaction in solutions and structural features of biomolecules have on the thermochemical characteristics of solutions of oligopeptides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.

Similar content being viewed by others

REFERENCES

  1. G. Barone, G. Castronuovo, V. Elia, and K. Srassinopoulou, J. Chem. Soc., Farady Trans. 80, 3095 (1984). https://doi.org/10.1039/F19848003095

    Article  CAS  Google Scholar 

  2. K. A. Dill, Biochemistry 29, 7133 (1990). https://doi.org/10.1021/bi00483a001

    Article  CAS  Google Scholar 

  3. S. N. Timasheff, Ann. Rev. Biophys. Biomol. Struct. 22, 67 (1993). https://doi.org/10.1146/annurev.bb.22.060193.000435

    Article  CAS  Google Scholar 

  4. T. B. Granström, K. Izumori, and M. Leisola, Appl. Microbiol. Biotechnol. 74, 277 (2007). https://doi.org/10.1007/s00253-006-0761-3

    Article  CAS  Google Scholar 

  5. E. Yu. Tyunina, I. N. Mezhevoi, and V. V. Dunaeva, J. Chem. Thermodyn. 150, 106206 (2020). https://doi.org/10.1016/j.jct.2020.106206

  6. E. Yu. Tyunina, I. N. Mezhevoi, and A. A. Stavnova, J. Mol. Liq. 329, 115568 (2021). https://doi.org/10.1016/j.molliq.2021.115568

  7. V. G. Badelin, E. Yu. Tyunina, and I. N. Mezhevoi, Russ. J. Appl. Chem. 80, 711 (2007). https://doi.org/10.1134/S1070427207050047

    Article  CAS  Google Scholar 

  8. I. Wadsö and R. N. Goldberg, Pure Appl. Chem. 73, 1625 (2001).https://doi.org/10.1351/pac200173101625

    Article  Google Scholar 

  9. D. G. Archer, J. Phys. Chem. Ref. Data 28, 1 (1999).https://doi.org/10.1063/1.556034

    Article  CAS  Google Scholar 

  10. I. Wadsö, Sci. Tools LKB Instrum. J. 13, 33 (1966).

    Google Scholar 

  11. I. N. Mezhevoi and V. G. Badelin, Russ. Chem. Bull. 57, 2452 (2008).

    Article  CAS  Google Scholar 

  12. A. V. Kustov, O. A. Antonova, and N. L. Smirnova, J. Mol. Liq. 232, 214 (2017). https://doi.org/10.1016/j.molliq.2017.02.065

    Article  CAS  Google Scholar 

  13. A. V. Kustov, O. A. Antonova, and N. L. Smirnova, J. Therm. Anal. Calorim. 129, 461 (2017). https://doi.org/10.1007/s10973-017-6172-0

    Article  CAS  Google Scholar 

  14. I. N. Mezhevoi and V. G. Badelin, Russ. J. Phys. Chem. A 87, 589 (2013).

    Article  CAS  Google Scholar 

  15. T. H. Lilley, Pure Appl. Chem. 65, 2551 (1993). https://doi.org/10.1351/pac199365122551

    Article  CAS  Google Scholar 

  16. W. G. McMillan and J. E. Mayer, J. Chem. Phys. 13, 276 (1945). https://doi.org/10.1063/1.1724036

    Article  CAS  Google Scholar 

  17. V. P. Barannikov, M. S. Kurbatova, and I. N. Mezhevoi, Thermochim. Acta 689, 178647 (2020). https://doi.org/10.1016/j.tca.2020.178647

  18. M. Matsumoto and K. Amaya, Bull. Chem. Soc. Jpn. 56, 2521 (1983). https://doi.org/10.1246/bcsj.56.2521

    Article  CAS  Google Scholar 

  19. B. Nowicka and H. Piekarski, J. Mol. Liq. 95, 323 (2002). https://doi.org/10.1016/S0167-7322(01)00297-5

    Article  CAS  Google Scholar 

  20. V. G. Badelin and I. N. Mezhevoi, Russ. J. Gen. Chem. 87, 1766 (2017).

    Article  CAS  Google Scholar 

  21. V. I. Smirnov and V. G. Badelin, Thermochim. Acta 524, 35 (2011). https://doi.org/10.1016/j.tca.2011.06.008

    Article  CAS  Google Scholar 

  22. J. E. Desnoyers, G. Perron, L. Avedikian, et al., J. Solution Chem. 5, 631 (1976). https://doi.org/10.1007/BF00648221

    Article  CAS  Google Scholar 

  23. G. I. Makhatadze and P. L. Privalov, J. Mol. Biol. 213, 375 (1990). https://doi.org/10.1016/S0022-2836(05)80197-4

    Article  CAS  Google Scholar 

  24. I. N. Mezhevoi and V. G. Badelin, Russ. J. Gen. Chem. 84, 223 (2014).

    Article  CAS  Google Scholar 

  25. M. Ide, Y. Maeda, and H. Kitano, J. Phys. Chem. B 101, 7022 (1997). https://doi.org/10.1021/jp971334m

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the RF Ministry of Science and Higher Education as part of State Task no. AAAA-A21-121011490059-5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Mezhevoi.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by E. Boltukhina

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mezhevoi, I.N., Gromova, N.M. Effect of Structural and Optical Isomerism of Aliphatic Dipeptides on the Enthalpic Characteristics of Interaction with Xylitol in Water. Russ. J. Phys. Chem. 96, 2687–2691 (2022). https://doi.org/10.1134/S0036024422120196

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422120196

Keywords:

Navigation