Skip to main content
Log in

Mechanism of Corrosion of Low-Carbon Steel in 1 M Solutions of Hydrochloric Acid Saturated with Oxygen

  • PHYSICAL CHEMISTRY OF SURFACE PHENOMENA
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

Potentiometry and voltammetry with a rotating disk electrode are used to study the corrosion of St3 low-carbon steel in 1 M HCl containing dissolved molecular oxygen from the mass loss of metal samples in a static and dynamic aggressive environment. It is shown that molecular oxygen in the acid solution and the transition from the static to dynamic state of an aggressive medium accelerates the corrosion of steel. The corrosion of steel in this environment includes the anodic ionization of steel in the kinetic region and two partial cathodic reactions: the evolution of hydrogen and the reduction of dissolved molecular oxygen, characterized by kinetic and diffusion controls, respectively. Modeling the effect the hydrodynamic mode of the motion of a corrosive medium has on the rate of the cathodic reduction of molecular O2 on low-carbon steel using the Levich equation and comparing the results to experimental data suggests with high probability that in the flow of a corrosive medium it mainly proceeds according to the scheme O2 + 2H+ + 2e = H2O2. The values of the true kinetic currents of the cathodic reaction are estimated for a steel disk electrode in 1 M HCl that is freely aerated with air and forcibly aerated with gaseous O2. The effective coefficient of diffusion of dissolved molecular O2 in 1 M HCl is established.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. Kaesche, Die Korrosion der Metalle. Physikalisch-chemische Prinzipien und aktuelle Probleme (Springer, Berlin, 1979).

    Google Scholar 

  2. L. I. Antropov, Theoretical Electrochemistry (Vyssh. Shkola, Moscow, 1965), p. 348 [in Russian].

    Google Scholar 

  3. J. O. Bockris, D. Drazic, and A. R. Despic, Electrochim. Acta 4, 325 (1961). https://doi.org/10.1016/0013-4686(61)80026-1

    Article  CAS  Google Scholar 

  4. R. J. Chin and K. Nobe, J. Electrochem. Soc. 119, 1457 (1972). https://doi.org/10.1149/1.2404023

    Article  CAS  Google Scholar 

  5. F. Si, Y. Zhang, L. Yan, et al., Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Ed. by W. Xing, G. Yin, and J. Zhang (Elsevier, Amsterdam, 2014), p. 133. https://doi.org/10.1016/B978-0-444-63278-4.00004-5

    Book  Google Scholar 

  6. V. M. Andoralov, M. R. Tarasevich, and O. V. Tripachev, Russ. J. Electrochem. 47, 1327 (2011). https://doi.org/10.1134/S1023193511120020

    Article  CAS  Google Scholar 

  7. Z. Zhao and P. K. Shen, Electrochemical Oxygen Reduction, Ed. by P. K. Shen (Springer, Singapore, 2021), p. 11. https://doi.org/10.1007/978-981-33-6077-8_2

    Book  Google Scholar 

  8. L. Vracar, Encyclopedia of Applied Electrochemistry, Ed. by G. Kreysa, K. Ota, and R. F. Savinell (Springer Science, New York, 2014), p. 1485.

    Google Scholar 

  9. Z. Jia, G. Yin, and J. Zhang, in Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Ed. by W. Xing, J. Zhang, and G. Yin (Elsevier, Amsterdam, 2014), p. 199. https://doi.org/10.1016/B978-0-444-63278-4.00006-9

    Book  Google Scholar 

  10. Ya. G. Avdeev, K. L. Anfilov, and Yu. I. Kuznetsov, Int. J. Corros. Scale Inhib. 10, 1566 (2021). https://doi.org/10.17675/2305-6894-2021-10-4-12

    Article  CAS  Google Scholar 

  11. Yu. V. Pleskov and V. Yu. Filinovskii, The Rotating Disk Electrode (Consultants Bureau, New York, 1976).

    Book  Google Scholar 

  12. I. Dumitrescu and R. M. Crooks, Proc. Natl. Acad. Sci. U. S. A. 109, 11493 (2012). https://doi.org/10.1073/pnas.1201370109

    Article  PubMed  PubMed Central  Google Scholar 

  13. C. Du, Q. Tan, G. Yin, and J. Zhang, in Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Ed. by W. Xing, G. Yin, and J. Zhang (Elsevier, Amsterdam, 2014), p. 171. https://doi.org/10.1016/B978-0-444-63278-4.00005-7

    Book  Google Scholar 

  14. A. L. Colley, J. V. Macpherson, and P. R. Unwin, Electrochem. Commun. 10, 1334 (2008). https://doi.org/10.1016/j.elecom.2008.06.032

    Article  CAS  Google Scholar 

  15. Short Handbook of Physical Chemical Values, Ed. by K. P. Mishchenko and A. A. Ravdel’ (Khimiya, Leningrad, 1967), p. 103 [in Russian].

    Google Scholar 

  16. W. Xing, M. Yin, Q. Lv, et al., in Rotating Electrode Methods and Oxygen Reduction Electrocatalysts, Ed. by W. Xing, J. Zhang, and G. Yin (Elsevier, Amsterdam, 2014), p. 1. https://doi.org/10.1016/B978-0-444-63278-4.00001-X

    Book  Google Scholar 

  17. N. A. Mel’nichenko, Russ. J. Phys. Chem. A 82, 1533 (2008). https://doi.org/10.1134/S0036024408090239

    Article  CAS  Google Scholar 

  18. D. Tromans, Hydrometallurgy 50, 279 (1998). https://doi.org/10.1016/S0304-386X(98)00060-7

    Article  CAS  Google Scholar 

  19. G. W. Hung and R. H. Dinius, J. Chem. Eng. Data 17, 449 (1972). https://doi.org/10.1021/je60055a001

    Article  CAS  Google Scholar 

  20. A. N. Frumkin and E. A. Aikazyan, Dokl. Akad. Nauk SSSR 100, 315 (1955).

    CAS  Google Scholar 

  21. A. N. Frumkin and G. A. Tedoradze, Dokl. Akad. Nauk SSSR 118, 530 (1958).

    Google Scholar 

  22. X. Wang, Z. Li, Y. Qu, et al., Chemistry 5, 1486 (2019). https://doi.org/10.1016/j.chempr.2019.03.002

    Article  CAS  Google Scholar 

  23. W. N. Wermink and G. F. Versteeg, Ind. Eng. Chem. Res. 56, 3775 (2017). https://doi.org/10.1021/acs.iecr.6b04606

    Article  CAS  Google Scholar 

  24. W. N. Wermink and G. F. Versteeg, Ind. Eng. Chem. Res. 56, 3789 (2017). https://doi.org/10.1021/acs.iecr.6b04641

    Article  CAS  Google Scholar 

  25. Ya. G. Avdeev and T. E. Andreeva, Russ. J. Phys. Chem. A 95, 1128 (2021). https://doi.org/10.1134/S0036024421060029

    Article  CAS  Google Scholar 

  26. Ya. G. Avdeev and T. E. Andreeva, Russ. J. Phys. Chem. A 96, 425 (2022). https://doi.org/10.1134/S0036024422020030

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by R&D 2022–2024 “Chemical Resistance of Materials: Protecting Metals and Other Materials from Corrosion and Oxidation,” EGISU registration no. 122011300078-1, inventory number FFZS-2022-0013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ya. G. Avdeev.

Additional information

Translated by M. Drozdova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Avdeev, Y.G., Andreeva, T.E. Mechanism of Corrosion of Low-Carbon Steel in 1 M Solutions of Hydrochloric Acid Saturated with Oxygen. Russ. J. Phys. Chem. 96, 2189–2197 (2022). https://doi.org/10.1134/S0036024422100041

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422100041

Keywords:

Navigation