Skip to main content
Log in

Is the Size of a Small System a Thermodynamic Parameter?

  • CHEMICAL THERMODYNAMICS AND THERMOCHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

A corollary of the molecular equilibrium theory of small systems is considered for the Clausius–Clapeyron equation with regard to experimentally measured periods of relaxation of momentum and processes of mass transfer. It is shown that in accordance with the phase rule, the heat of the phase transition for small drops does not depend on their radii; i.e., the size of a small system is not a thermodynamic parameter. This conclusion contradicts the existing interpretations that follow from thermodynamic approaches based on metastable Gibbs droplets, in which the ratio of momentum and mass relaxation times is violated and the droplet size is considered a thermodynamic parameter. This contradiction is explained by variation in the size of the equilibrium small phase changing the surface tension, which is not an intrinsic property of a small phase. In thermodynamics, however, varying the radius of a droplet alters the internal state of a small phase. Consideration is given to the Hill approach based on the possibility of using metastable states in small systems to derive the Clausius–Clapeyron equation, and to the correctness of using equilibrium equations of thermodynamics to describe the melting of small crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Ya. I. Frenkel’, Kinetic Theory of Liquids (Oxford Univ., London, 1946; Akad. Nauk SSSR, Moscow, 1945).

  2. V. P. Skripov and M. Z. Faizullin, Phase Transitions Crystal-Liquid-Vapor and Thermodynamic Similarity (Fizmatlit, Moscow, 2003) [in Russian].

    Google Scholar 

  3. N. F. Uvarov and V. V. Boldyrev, Russ. Chem. Rev. 70, 265 (2001).

    Article  CAS  Google Scholar 

  4. O. A. Petrii and G. A. Tsirlina, Russ. Chem. Rev. 70, 285 (2001).

    Article  CAS  Google Scholar 

  5. M. Haruta and M. Date, Appl. Catal. A: Gen. 222, 427 (2001).

    Article  CAS  Google Scholar 

  6. M.-C. Daniel and D. Austric, Chem. Rev. 104, 293 (2004).

    Article  CAS  PubMed  Google Scholar 

  7. M. Haruta, Gold Bull. 37, 27 (2004).

    Article  CAS  Google Scholar 

  8. V. V. Smirnov, S. N. Lanin, A. Yu. Vasil’kov, et al., Russ. Chem. Bull. 54, 2286 (2005).

    Article  CAS  Google Scholar 

  9. I. P. Suzdalev, Nanotechnology: Physical Chemistry of Nanoclusters, Nanonostructures, and Nanomaterials (KomKniga, Moscow, 2006) [in Russian].

    Google Scholar 

  10. Q. Chang Sun, Prog. Solid State Chem. 35, 1 (2007).

    Article  CAS  Google Scholar 

  11. T. N. Rostovshchikova, V. V. Smirnov, V. M. Kozhevin, et al., Ross. Nanotekhnol. 2 (1–2), 47 (2007).

    Google Scholar 

  12. Handbook Springer of Nanotechnology, Ed. by Bharat Bhushan, 2nd ed. (Springer Science, Berlin, 2007).

    Google Scholar 

  13. A. A. Eliseev and A. V. Lukashin, Functional Nanomaterials (Fizmatlit, Moscow, 2010) [in Russian].

    Google Scholar 

  14. I. P. Suzdalev, Electric and Magnetic Transitions in Nanoclusters and Nanostructures (Krasand, Moscow, 2011) [in Russian].

    Book  Google Scholar 

  15. V. A. Polukhin and N. A. Vatolin, Modeling of Disordered and Nanostructured Phases (UrO RAN, Yekaterinburg, 2011) [in Russian].

    Google Scholar 

  16. J. W. Gibbs, Thermodynamics: Statistical Mechanics (Ox Bow Press, Woodbridge, CN, 1981).

    Google Scholar 

  17. J. J. Thomson, Applications of Dynamics to Physics and Chemistry (Macmillan, London, UK, 1888).

    Google Scholar 

  18. A. I. Rusanov, Phase Equilibria and Surface Phenomena (Khimiya, Leningrad, 1967) [in Russian].

    Google Scholar 

  19. P. N. Pavlov, Zh. Russ. Fiz.-Khim. Ob-va 40, 1022 (1908).

    Google Scholar 

  20. P. N. Pawlow, Z. Phys. Chem. 65, 1.545 (1909).

  21. P. N. Pawlow, Z. Phys. Chem. 68, 316 (1910).

    Google Scholar 

  22. P. R. Couchman and W. A. Jesser, Nature (London, U.K.) 236, 481 (1977).

    Article  Google Scholar 

  23. T. L. Hill, J. Chem. Phys. 36, 3182 (1962).

    Article  CAS  Google Scholar 

  24. T. L. Hill, Thermodynamics of Small Systems, Part 1 (W. A. Benjamin, New York, 1963).

    Google Scholar 

  25. T. L. Hill, Thermodynamics of Small Systems, Part 2 (W. A. Benjamin, New York, 1964).

    Google Scholar 

  26. S. V. Shevkunov, Colloid. J. 81, 298 (2019).

    Article  CAS  Google Scholar 

  27. Yu. K. Tovbin, Small Systems and Fundamentals of Thermodynamics (Fizmatlit, Moscow, 2018; CRC, Boca Raton, 2019).

  28. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 59, 677 (2010).

    Article  CAS  Google Scholar 

  29. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 1717 (2010).

    Article  CAS  Google Scholar 

  30. T. L. Hill, Statistical Mechanics. Principles and Selected Applications (McGraw-Hill, New York, 1956).

    Google Scholar 

  31. K. Huang, Statistical Mechanics (Wiley, New York, 1966).

    Google Scholar 

  32. Yu. K. Tovbin, Theory of Physicochemical Processes at the Gas-Solid Interface (Nauka, Moscow, 1990; CRC, Boca Raton, 1991).

  33. L. Onsager, Phys. Rev. 65, 117 (1944).

    Article  CAS  Google Scholar 

  34. R. J. Baxter, Exactly Solved Model in Statistical Mechanics (Academic, London, 1982).

    Google Scholar 

  35. R. Kikuchi, Phys. Rev. 81, 988 (1951).

    Article  Google Scholar 

  36. Theory and Applications of the Cluster Variation and Path Probability Methods, Ed. by J. L. Moran-Lopez and J. M. Sanchez (Plenum, New York, 1996).

    Google Scholar 

  37. E. V. Votyakov and Yu. K. Tovbin, Russ. J. Phys. Chem. A 96 (3) (2022, in press).

  38. S. Ono and S. Kondo, Molecular Theory of Surface Tension in Liquids, Vol. X: Handbuch der Physik (Springer, Berlin, 1960).

  39. J. E. Lane, Austr. J. Chem. 21, 827 (1968).

    Article  CAS  Google Scholar 

  40. E. M. Piotrovskaya and N. A. Smirnova, Vestn. Leningr. Univ., No. 10, 94 (1977).

  41. Yu. K. Tovbin, Kolloidn. Zh. 45, 707 (1983).

    CAS  Google Scholar 

  42. B. N. Okunev, V. A. Kaminskii, and Yu. K. Tovbin, Kolloidn. Zh. 47, 1110 (1985).

    CAS  Google Scholar 

  43. N. A. Smirnova, Molecular Theories of Solutions (Khimiya, Leningrad, 1987) [in Russian].

    Google Scholar 

  44. A. G. Morachevskii, N. A. Smirnova, E. M. Piotrovskaya, et al., Thermodynamics of Liquid-Vapor Equilibrium, Ed. by A. G. Morachevskii (Khimiya, Leningrad, 1989) [in Russian].

    Google Scholar 

  45. Yu. K. Tovbin, Russ. J. Phys. Chem. A 84, 180 (2010).

    Article  CAS  Google Scholar 

  46. Yu. K. Tovbin, E. S. Zaitseva, and A. B. Rabinovich, Russ. J. Phys. Chem. A 90, 2237 (2016).

    Article  CAS  Google Scholar 

  47. Yu. K. Tovbin and A. B. Rabinovich, Russ. Chem. Bull. 58, 2193 (2009).

    Article  CAS  Google Scholar 

  48. R. Rubo, Thermodynamics (North-Holland, Amsterdam, 1968).

    Google Scholar 

  49. A. V. Storonkin, Thermodynamics of Heterogeneous Systems (Leningr. Gos. Univ., Leningrad, 1967), Parts 1, 2 [in Russian].

  50. I. P. Bazarov, Thermodynamics (Vyssh. Shkola, Moscow, 1991) [in Russian].

    Google Scholar 

  51. Yu. K. Tovbin, Russ. J. Phys. Chem. A 94, 622 (2020).

    Article  CAS  Google Scholar 

  52. Yu. K. Tovbin, Russ. J. Phys. Chem. A 92, 1 (2018).

    Article  CAS  Google Scholar 

  53. I. Prigogine and R. Defay, Chemical Thermodynamics (Longmans Green, London, 1954).

    Google Scholar 

  54. Yu. K. Tovbin and V. N. Komarov, Russ. Chem. Bull. 62, 2620 (2013).

    Article  CAS  Google Scholar 

  55. Yu. K. Tovbin and V. N. Komarov, Phys. Solid State 56, 341 (2014).

    Article  CAS  Google Scholar 

  56. Ph. Buffat and J.-P. Borel, Phys. Rev. A 13, 2287 (1976).

    Article  CAS  Google Scholar 

  57. F. Ercolessi, W. Andreoni, and E. Tosatti, Phys. Rev. Lett. 66, 991 (1991).

    Article  Google Scholar 

  58. Y. Teraoka, Surf. Sci. 281, 317 (1993).

    Article  CAS  Google Scholar 

  59. H. Sakai, Surf. Sci. 351, 285 (1996).

    Article  CAS  Google Scholar 

  60. D. Xie, M. P. Wang, W. H. Qi, and L. F. Caoa, Mater. Chem. Phys. 96, 418 (2006).

    Article  CAS  Google Scholar 

  61. W. H. Qi and M. P. Wang, Mater. Chem. Phys. 88, 280 (2004).

    Article  CAS  Google Scholar 

  62. W. H. Qi, Phys. B (Amsterdam, Neth.) 368, 46 (2005).

  63. J. Suna and S. L. Simona, Thermochim. Acta 463, 32 (2007).

    Article  CAS  Google Scholar 

  64. Ch. Q. Sun, Y. Wang, B. K. Tay, et al., J. Phys. Chem. B 106, 10701 (2002).

    Article  CAS  Google Scholar 

  65. K. K. Nanda, S. N. Sahu, and S. N. Behera, Phys. Rev. A 66, 013208 (2002).

  66. A. R. Ubbelohde, The Molten State of Matter (Wiley, New York, 1978).

    Google Scholar 

  67. V. V. Pavlov, Solidification and Its Molecular Model (Nauka, Moscow, 1985) [in Russian].

    Google Scholar 

  68. Yu. I. Petrov, Clusters and Small Clusters (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  69. V. P. Skripov and V. P. Koverda, Spontaneous Crystallization of Supercooled Liquids (Nauka, Moscow, 1984) [in Russian].

    Google Scholar 

  70. L. Girifalco, Statistical Physics of Materials (Wiley, New York, 1973).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. K. Tovbin.

Additional information

Translated by L. Chernikova

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tovbin, Y.K. Is the Size of a Small System a Thermodynamic Parameter?. Russ. J. Phys. Chem. 96, 1647–1657 (2022). https://doi.org/10.1134/S0036024422080258

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024422080258

Keywords:

Navigation