Skip to main content
Log in

First-Principle Investigations of (Ti1 – xVx)2FeGa Аlloys. A Study on Structural, Мagnetic, Еlectronic, and Еlastic Рroperties

  • STRUCTURE OF MATTER AND QUANTUM CHEMISTRY
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The structural, magnetic, electronic and elastic properties of ternary and quaternary (Ti1 ‒ xVx)2FeGa alloys with inverse-Heusler (XA) structure were investigated at x = 0, 0.25, 0.50, 0.75, and 1. The crystal structures of (Ti1 – xVx)2FeGa compounds are cubic (space group: F\(\bar {4}\)3m) with Hg2CuTi prototype for x = 0 and 1. At x = 0.5 the structure is also cubic (space group: F\(\bar {4}\)3m) with LiMgPdSn protype, while it is tetragonal (space group: P\(\bar {4}\)m2) at x = 0.25 and 0.75. Calculated optimized lattice parameters (a and c), bulk modulus (B), and elastic constants (Cij) are consistent with the available data in the literature. Total and partial magnetic moments of (Ti1 – xVx)2FeGa alloys were obtained. An increase in the total magnetic moment values were observed upon addition of V to the Ti2FeGa alloy. From spin polarized band calculations, Ti2FeGa, (Ti0.75V0.25)2FeGa, TiVFeGa, and V2FeGa have a minority-spin energy gap of 0.65, 0.38, 0.83, and 0.64 eV, respectively, and they are guessed as half-metallic ferromagnets. According to the results of second-order elastic constants, these compounds met the Born mechanical stability criteria. In addition, according to Pugh criteria, it was found that they have a ductile structure and show anisotropic behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. X. J. Zhang, Z. H. Liu, Y. J. Zhang, H. Y. Liu, G. D. Liu, Y. T. Cui, and X. Q. Ma, Intermetallics 73, 26 (2016).

    Article  CAS  Google Scholar 

  2. F. Ahmadian, J. Korean Phys. Soc. 64, 277 (2014).

    Article  CAS  Google Scholar 

  3. G. E, Bacon and J. S. Plant, J. Phys. F: Met. Phys. 1, 524 (1971).

    Article  Google Scholar 

  4. K. H. J. Buschow and P. G. van Engen, J. Magn. Magn. Mater. 25, 90 (1981).

    Article  CAS  Google Scholar 

  5. S. Ghosh and D. C. Gupta, J. Magn. Magn. Mater. 411, 120 (2016).

    Article  CAS  Google Scholar 

  6. X. P. Wei, J. B. Deng, G. Y. Mao, S. B. Chu, and X. R. Hu, Intermetallics 29, 86 (2012).

    Article  CAS  Google Scholar 

  7. M. Liping, S. Yongfan, and H. Yu, J. Magn. Magn. Mater. 369, 205 (2014).

    Article  Google Scholar 

  8. M. Drief, Y. Guermit, N. Benkhettou, D. Rached, H. Rached, and T. Lantri, J. Supercond. Novel Magn. 31, 1059 (2018).

    Article  CAS  Google Scholar 

  9. J. Goraus and J. Czerniewski, J. Magn. Magn. Mater. 498, 166106 (2020).

    Article  CAS  Google Scholar 

  10. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  11. G.Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  12. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  13. M. P. A. T. Methfessel and A. T. Paxton, Phys. Rev. B 40, 3616 (1989).

    Article  CAS  Google Scholar 

  14. O. H. Nielsen and R. M. Martin, Phys. Rev. Lett. 50, 697 (1983).

    Article  CAS  Google Scholar 

  15. J. Ma, J. He, D. Mazumdar, K. Munira, S. Keshavarz, T. Lovorn, C. Wolverton, A. W. Ghosh, and W. H. Butler, Phys. Rev. B 98, 094410 (2018).

    Article  CAS  Google Scholar 

  16. X. M. Zhang, G. Z. Xu, Y. Du, E. K. Liu, Z. Y. Liu, G. D. Liu, W. H. Wang, and G. H. Wu, Lett. J. Explor. Front. Phys. 104, 27012 (2013).

    Google Scholar 

  17. K. L. Yao, G. Y. Gao, Z. L. Liu, L. Zhu, and Y. L. Li, Phys. B (Amsterdam, Neth.) 366, 62 (2005).

  18. S. Picozzi, A. Continenza, and A. J. Freeman, Phys. Rev. B 66, 094421 (2002).

    Article  Google Scholar 

  19. I. Galanakis, N. Papanikolaou, and P. H. Dederichs, Phys. Rev. B 66, 134428 (2002).

    Article  Google Scholar 

  20. N. Arikan, G. D. Yildiz, Y. G. Yildiz, and A. Iyigör, J. Electron. Mater. 49, 3052 (2020).

    Article  CAS  Google Scholar 

  21. F. Mouhat and F. X. Coudert, Phys. Rev. B 90, 224104 (2014).

    Article  Google Scholar 

  22. S. F. Pugh, Philos. Mag., Ser. 7 45, 823 (1954).

    Article  CAS  Google Scholar 

  23. J. Haines, J. M. Leger, and G. Bocquillon, Ann. Rev. Mater. Res. 31, 1 (2001).

    Article  CAS  Google Scholar 

  24. R. Gaillac, P. Pullumbi, and F. X. Coudert, J. Phys.: Condens. Matter 28, 275201 (2016). http://progs.coudert.name/elate.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to O. Örnek or N. Arıkan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Örnek, O., İyigör, A., Meriç, A.S. et al. First-Principle Investigations of (Ti1 – xVx)2FeGa Аlloys. A Study on Structural, Мagnetic, Еlectronic, and Еlastic Рroperties. Russ. J. Phys. Chem. 95, 2592–2599 (2021). https://doi.org/10.1134/S003602442113015X

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S003602442113015X

Keyword:

Navigation