Skip to main content
Log in

Integral Ways of Calculating the Destruction of Copolymers of Polyethylene Glycol Fumarate with Acrylic Acid

  • CHEMICAL KINETICS AND CATALYSIS
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The thermal decomposition of polyethylene glycol fumarate–acrylic acid copolymer is investigated at different rates of heating. It is shown that increasing the rate of heating raises the temperature of the onset of decomposition. The kinetic parameters of decomposition are calculated using the integral Kissinger–Akahira–Sunose procedure. It is found that at different degrees of conversion, the activation energies are very close: E = 205–227 kJ/mol. The effect the composition of the copolymer has on the results from kinetic calculations is shown. The Coates–Redfern approach is used to determine the pre-exponential factor and the model of thermal decomposition. Calculated thermogravimetric curves are constructed and compared to experimental ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. H. V. Boenig, Unsaturated Polyesters: Structure and Properties (Elsevier, Amsterdam, 1964).

    Google Scholar 

  2. C. Benny and T. T. Eby, J. Appl. Polym. Sci. 100, 457 (2006). https://doi.org/10.1007/s11595-009-4627-2

    Article  CAS  Google Scholar 

  3. S. V. Vinogradova, V. V. Korshak, V. I. Kul’chitskii, et al., Polymer Sci. U. S. S. R. 10, 1757 (1968). https://doi.org/10.1016/0032-3950(68)90368-7

    Article  Google Scholar 

  4. K. G. Johnson and L. S. Yang, in Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, Ed. by J. Scheirs and T. E. Long (Wiley, West Sussex, UK, 2004), p. 697.

    Google Scholar 

  5. E. Kicko-Walczak, J. Appl. Polym. Sci. 88, 2851 (2003). https://doi.org/10.1002/app.11723

    Article  CAS  Google Scholar 

  6. M. Zh. Burkeev, A. Z. Sarsenbekova, Y. M. Tazhbayev, and I. V. Figurinene, Russ. J. Phys. Chem. A 89, 2183 (2015). https://doi.org/10.1134/S0036024415120067

    Article  CAS  Google Scholar 

  7. A. Z. Sarsenbekova, G. K. Kudaibergen, M. Zh. Burkeev, and G. K. Burkeeva, Russ. J. Phys. Chem. A 93, 1252 (2019). https://doi.org/10.1134/S0044453719060281

    Article  CAS  Google Scholar 

  8. S. A. Vyazovkin, K. Burnham, J. M. Criadoc, et al., Thermochim. Acta 520, 1 (2011). https://doi.org/10.1016/j.tca.2011.03.034

    Article  CAS  Google Scholar 

  9. S. Vyazovkin, K. Chrissafis, M. L. di Lorenzo, et al., Thermochim. Acta 590, 1 (2014). https://doi.org/10.1016/j.tca.2014.05.036

    Article  CAS  Google Scholar 

  10. M. Zh. Burkeev, G. K. Kudaibergen, G. K. Burkeeva, T. M. Seilkhanov, E. M. Tazhbaev, J. Hranicek, A. V. Omasheva, and S. Zh. Davrenbekov Russ. J. Appl. Chem. A 91, 1145 (2018). https://doi.org/10.1134/S1070427218070121

    Article  CAS  Google Scholar 

  11. H. E. Kissinger, Anal. Chem. 29, 1702 (1957). https://doi.org/10.1021/ac60131a045

    Article  CAS  Google Scholar 

  12. T. Akahira and T. Sunose, Sci. Technol. 16, 22 (1971). https://doi.org/10.17221/115/2016-RAE

    Article  Google Scholar 

  13. A. W. Coats and J. P. Redfern, Nature (London, U.K.) 201, 68 (1964). https://doi.org/10.1038/201068a0

    Article  CAS  Google Scholar 

  14. A. A. Koptelov, I. A. Koptelov, A. A. Rogozina, and E. S. Yushkov, Russ. J. Appl. Chem. 89, 1454 (2016). https://doi.org/10.1134/S1070427216090111

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Bolatbay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burkeev, M.Z., Bolatbay, A.N., Sarsenbekova, A.Z. et al. Integral Ways of Calculating the Destruction of Copolymers of Polyethylene Glycol Fumarate with Acrylic Acid. Russ. J. Phys. Chem. 95, 2009–2013 (2021). https://doi.org/10.1134/S0036024421100034

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024421100034

Keywords:

Navigation