Skip to main content
Log in

Sensory properties of oxide films with high concentrations of conduction electrons

  • Physical Chemistry of Surface Phenomena
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

The dependence of a sensor’s response to hydrogen on the temperature and hydrogen pressure in an indium oxide nanostructured film is measured. A theory of sensor’s response to reducing gases in nanostructured semiconducting oxides with high concentrations of electrons in the conduction band is developed (using the example of In2O3). It is shown that the capture of conduction electrons by adsorbed oxygen redistributes the electrons in nanoparticles and reduces the surface electron density and the conductivity of a system; the conductivity is proportional to the electron density in nanoparticle contacts, i.e., to the surface electron density. It is found that atomic oxygen ions react with reducing gases (H2, CO) during adsorption of the latter: electrons are released and enter the volumes of nanoparticles; the conductivity of the system grows, creating the sensory effect. Using a model developed earlier to describe the distribution of conduction electrons in a semiconductor nanoparticle, a kinetic scheme corresponding to the above scenario is built and corresponding equations are solved. As a result, a theoretical dependence of a sensor’s sensitivity to temperature is found that describes the experimental data well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. W. Gopel and K. Schierbaum, Sens. Actuators B 26, 1 (1995).

    Article  Google Scholar 

  2. Y. Shimizu and M. Egashira, MRS Bull. 24, 18 (1999).

    Article  CAS  Google Scholar 

  3. N. Yamazoe, Sens. Actuators B 108, 2 (2005).

    Article  CAS  Google Scholar 

  4. G. Korotcenkov, Mater. Sci. Eng. B 139, 1 (2007).

    Article  CAS  Google Scholar 

  5. N. Yamazoe and K. Shimanoe, Sens. Actuators B 138, 100 (2009).

    Article  CAS  Google Scholar 

  6. C. Xu, J. Tamaki, N. Miura, and N. Yamazoe, Sens. Actuators B 3, 147 (1991).

    Article  CAS  Google Scholar 

  7. D. E. Williams, Sens. Actuators B 57, 1 (1999).

    Article  CAS  Google Scholar 

  8. F. Lu, Y. Liu, M. Dong, and X. P. Wang, Sens. Actuators B 66, 225 (2000).

    Article  CAS  Google Scholar 

  9. A. Rothschild and Y. Komem, J. Appl. Phys. 95, 6374 (2004).

    Article  CAS  Google Scholar 

  10. G. Korotcenkov, Mater. Sci. Eng. R 61, 1 (2008).

    Article  Google Scholar 

  11. N. Barsan and U. Weimar, J. Phys.: Condens. Matter 15, R813 (2003).

    CAS  Google Scholar 

  12. D. Kohl, J. Phys. D: Appl. Phys. 34, R125 (2001).

    Article  CAS  Google Scholar 

  13. K. Schierbaum, U. Weimar, W. Gopel, and R. Kowalkowski, Sens. Actuators B 3, 205 (1991).

    Article  CAS  Google Scholar 

  14. M. A. Kozhushner, V. L. Bodneva, and L. I. Trakhtenberg, Russ. J. Phys. Chem. A 86, 1281 (2012).

    Article  CAS  Google Scholar 

  15. M. A. Kozhushner, L. I. Trakhtenberg, A. C. Landerville, and I. I. Oleynik, J. Phys. Chem. C 117, 11562 (2013).

    Article  CAS  Google Scholar 

  16. M. A. Kozhushner, L. I. Trakhtenberg, V. L. Bodneva, et al., J. Phys. Chem. C 118, 11440 (2014).

    Article  CAS  Google Scholar 

  17. V. F. Gromov, G. N. Gerasimov, T. V. Belysheva, and L. I. Trakhtenberg, Russ. J. Gen. Chem. 79, 2024 (2008).

    Article  Google Scholar 

  18. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 169, 32 (2012).

    Article  CAS  Google Scholar 

  19. C. Malagu, V. Guidi, M. Stefancich, et al., J. Appl. Phys. 91, 808 (2002).

    Article  CAS  Google Scholar 

  20. N. P. Zaretskiy, L. I. Menshikov, and A. A. Vasiliev, Sens. Actuators B 170, 148 (2012).

    Article  CAS  Google Scholar 

  21. M. A. Kozhushner, B. V. Lidskii, I. I. Oleynik, et al., J. Phys. Chem. C 119, 16286 (2015).

    Article  CAS  Google Scholar 

  22. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 187, 514 (2013).

    Article  CAS  Google Scholar 

  23. L. I. Trakhtenberg, G. N. Gerasimov, V. F. Gromov, et al., Sens. Actuators B 209, 562 (2015).

    Article  CAS  Google Scholar 

  24. T. V. Belysheva, A. K. Gatin, M. V. Grishin, M. I. Ikim, V. M. Matyuk, S. Y. Sarvadii, L. I. Trakhtenberg, and B. R. Shub, Russ. J. Phys. Chem. B 9, 733 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Kozhushner.

Additional information

Original Russian Text © M.A. Kozhushner, V.L. Bodneva, T.V. Belysheva, G.N. Gerasimov, V.F. Gromov, M.I. Ikim, Y. Paltiel, E.Yu. Spiridonova, L.I. Trakhtenberg, 2017, published in Zhurnal Fizicheskoi Khimii, 2017, Vol. 91, No. 3, pp. 533–538.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kozhushner, M.A., Bodneva, V.L., Belysheva, T.V. et al. Sensory properties of oxide films with high concentrations of conduction electrons. Russ. J. Phys. Chem. 91, 572–576 (2017). https://doi.org/10.1134/S0036024417030153

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417030153

Keywords

Navigation