Skip to main content
Log in

Study of 5-azidomethyl-8-hydroxyquinoline structure by X-ray diffraction and HF–DFT computational methods

  • Structure of Matter and Quantum Chemistry
  • Published:
Russian Journal of Physical Chemistry A Aims and scope Submit manuscript

Abstract

5-Azidomethyl-8-hydroxyquinoline has been synthesized and characterized using IR, 1H and 13C NMR spectroscopic methods. Thermal analysis revealed no solid-solid phase transitions. The crystal structure of this compound was refined by Rietveld method from powder X-ray diffraction data at 295 K. The single- crystal structure of the compound at 260 K was solved and refined using SHELX 97 program. According to the data obtained by both methods, the structure of the compound is monoclinic, space group P21/c, with Z = 4 and Z' = 1. For the single crystal at 260 K, a = 12.2879 (9) Å, b = 4.8782 (3) Å, c = 15.7423 (12) Å, β=100.807(14)°. Mechanisms of deformation resulting from intra- and intermolecular interactions, such as hydrogen bonding, induced slight torsions in the crystal structure. The optimized molecular geometry of 5-azidomethyl-8-hydroxyquinoline in the ground state is calculated using density functional theory (B3LYP) and Hartree-Fock (HF) methods with the 6-311G(d,p) basis set. The calculated results show good agreement with experimental values. Energy gap of the molecule was found using HOMO and LUMO calculation which reveals that charge transfer occurs within the molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. di Vaira, C. Bazzicalupi, P. Orioli, L. Messori, B. Bruni, and P. Zatta, Inorg. Chem. 43, 3795 (2004).

    Article  Google Scholar 

  2. A. Mellah and D. Benachour, Hydrometallurgy. 81, 100 (2006).

    Article  CAS  Google Scholar 

  3. A. Albert and J. N. Phillips, Chem. Soc. 264, 1294 (1956).

    Article  Google Scholar 

  4. R. Kayyali, A. S. Pannala, H. Khodr, and R. C. Hider, Biochem Pharmacol. 55, 1327 (1998).

    Article  CAS  Google Scholar 

  5. I. Cacciatore, E. Fornasari, L. Baldassare, C. Cornacchia, S. Fulle, E. S. di Filippo, T. Pietrangelo, and F. Pinnen, Pharm. 6, 54 (2013).

    CAS  Google Scholar 

  6. Y. Hamada, IEEE Trans. Electron Devices. 44, 1208 (1997).

    Article  CAS  Google Scholar 

  7. C. H. Chen and Shi Jianmin, J. Coord. Chem. Rev. 171, 161 (1998).

    Article  CAS  Google Scholar 

  8. D. H. Mathew and H. B. Schlegel, Chem. Mater. 13, 2632 (2001).

    Article  Google Scholar 

  9. V. A. Montes, R. Pohl, J. Shinar, and P. Anzenbacher, Jr., Chem. Eur. J. 12, 4523 (2006).

    Article  CAS  Google Scholar 

  10. G. N. Lipunovaab, E. V. Nosovaab, V. N. Charushinab, and O. N. Chupakhinab, Comm. Inorg. Chem. 34, 142 (2014).

    Article  Google Scholar 

  11. G. E. Collis, A. K. Burrell, K. D. John, and P. G. Plieger, Acta Crystallogr. C 59, 0443 (2003).

    Article  Google Scholar 

  12. C. H. Chen and J. M. Shi, Coord. Chem. Rev. 171, 161 (1998).

    Article  CAS  Google Scholar 

  13. A. Y. Shen, S. N. Wu, and C. T. Chiu, J. Pharm. Pharmacol. 51, 543 (1999).

    Article  CAS  Google Scholar 

  14. D. Mechlovich, T. Amit, S. A. Mandel, O. Bar-Am, K. Bloch, M. B. H. Vardi, and P. Youdim, J. Pharmacol. Exp. Ther. 333, 874 (2010).

    Article  CAS  Google Scholar 

  15. C. I. Nieto, M. A. Garcia, M. A. Farran, R. M. Claramunt, M. C. Torralba, M. R. Torres, I. Alkorta, and J. Elguero, J. Mol. Struct. 1008, 88 (2012).

    Article  CAS  Google Scholar 

  16. R. Desiderato, J. C. Jerry, and G. R. Freemant, Acta Crystallogr. B 27, 2443 (1971).

    Article  CAS  Google Scholar 

  17. D. E. Pearson, R. D. Wysong, and C. V. Breder, J. Org. Chem. 32, 2358 (1967).

    Article  CAS  Google Scholar 

  18. H. Gershon, M. W. McNeil, and A. T. Grefig, J. Org. Chem. 34, 3268 (1969).

    Article  CAS  Google Scholar 

  19. K. Hunger, Industrial Dyes, Chemistry, Properties, Applications (Wiley-VCH, Weinheim, 2003).

    Google Scholar 

  20. M. La Deda, A. Grisolla, I. Aiello, A. Crispini, M. Ghedini, S. Belviso, M. Amati, and F. Lelj, J. Chem. Soc., Dalton Trans. 16, 2424 (2004).

    Article  Google Scholar 

  21. A. Saylam, Z. Seferoglu, and N. Ertan, J. Mol. Liq. 195, 267 (2014).

    Article  CAS  Google Scholar 

  22. B. Himmi, B. Messnaoui, S. Kitane, A. Eddaif, A. Alaoui, A. Bouklouz, and M. Soufiaoui, Hydrometallurgy 93, 39 (2008).

    Article  CAS  Google Scholar 

  23. M. Labrador, M. A. Cuevas-Diarte, D. Mondieig, and Y. Haget, Thermochim. Acta 195, 261 (1992).

    Article  CAS  Google Scholar 

  24. H. M. Rietveld, J. A. Crystallog. 2, 65 (1969).

    Article  CAS  Google Scholar 

  25. G. Sheldrick, SHELXS-97 Program for the Refinement of Crystal Structure (Univ. Göttingen, Göttingen, Germany, 1997).

    Google Scholar 

  26. A. El Assyry, B. Benali, A. Boucetta, and B. Lakhrissi, J. Mater. Environ. Sci. 5, 1860 (2014).

    Google Scholar 

  27. Y. Li, Y. Y. Liu, X. J. Chen, X. H. Xiong, and F. S. Li, PLoS ONE 9, e91361 (2014).

    Article  Google Scholar 

  28. M. J. Frisch et al., Gaussian 03, Revision D.01 and D.02 (Gaussian Inc., Wallingford, CT, 2005).

    Google Scholar 

  29. A. Kadiri, B. Kabouchi, B. Benali, C. Cazeau-Dubroca, and G. Nouchi, Spectrochim. Acta, Part A 50, 1 (1994).

    Article  Google Scholar 

  30. C. Cazeau-Dubroca, Trends Phys. Chem. 2, 233 (1991).

    CAS  Google Scholar 

  31. K. Aggarwal and J. M. Khurana, J. Mol. Struct. 1079, 21 (2015).

    Article  CAS  Google Scholar 

  32. C. Lee, W. Yang, and R. G. Parr, J. Phys. Rev. B 37, 785 (1998).

    Article  Google Scholar 

  33. Y. Ataly, D. Avci, and A. Basoglu, J. Struct. Chem. 19, 239 (2008).

    Article  Google Scholar 

  34. Y. Chen, J. Wu, S. Ma, S. Zhou, X. Meng, L. Jia, and Zhiquan Pan, J. Mol. Struct. 1089, 1 (2015).

    Article  CAS  Google Scholar 

  35. K. Fukui, Science 218, 747 (1982).

    Article  CAS  Google Scholar 

  36. S. Gunasekaran, R. A. Balaji, S. Kumeresan, G. Anand, and S. Srinivasan, Can. J. Anal. Sci. Spectrosc. 53, 149 (2008).

    CAS  Google Scholar 

  37. D. Arul Dhas, I. Hubert Joe, S. D. D. Roy, and T. H. Freeda, Spectrochim. Acta, Part A 77, 36 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Bougharraf.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bougharraf, H., Benallal, R., Sahdane, T. et al. Study of 5-azidomethyl-8-hydroxyquinoline structure by X-ray diffraction and HF–DFT computational methods. Russ. J. Phys. Chem. 91, 358–365 (2017). https://doi.org/10.1134/S0036024417020078

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036024417020078

Keywords

Navigation