Skip to main content
Log in

Rare-Earth Nitrate Complexes with Dimethylformamide

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

In the rare-earth element nitrate (REE)–dimethylformamide (DMF)–water systems, which can be used to obtain nanosized REE oxides by solution combustion synthesis (SCS), the formation of coordination compounds [M(H2O)3(DMF)(NO3)3]·H2O (M = La–Pr) and [M(DMF)3(NO3)3] (M = Sm–Lu, Y) has been found. Using physicochemical methods of analysis (IR spectroscopy, X-ray powder diffraction, single-crystal X-ray diffraction, elemental analysis, thermogravimetric analysis, and differential scanning calorimetry), their composition has been determined and structural features have been established; thermolysis processes have been studied in a wide temperature range. It is shown that the final products of the decomposition of complex compounds are oxides of rare earth elements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. I. P. Borovinskaya, A. A. Gromov, E. A. Levashov, et al., Concise Encyclopedia of Self-Propagating High-Temperature Synthesis (Elsevier, Amsterdam, 2017).

    Google Scholar 

  2. A. Varma, A. S. Mukasyan, A. S. Rogachev, and K. V. Manukyan, Chem. Rev. 116, 14493 (2016). https://doi.org/10.1021/acs.chemrev.6b00279

    Article  CAS  PubMed  Google Scholar 

  3. A. S. Mukasyan, P. Epstein, and P. Dinka, Proc. Combust. Inst. 31, 1789 (2007). https://doi.org/10.1016/j.proci.2006.07.052

    Article  CAS  Google Scholar 

  4. S. K. Ghosh, S. N. Patra, S. K. Roy, et al., Ratio 1, 130 (2008).

    Google Scholar 

  5. A. Kumar, E. E. Wolf, and A. S. Mukasyan, Alche J. 57, 3473 (2011). https://doi.org/10.1002/aic.12537

  6. A. J. Christy and M. Umadevi, Mater. Res. Bull. 48, 4248 (2013). https://doi.org/10.1016/j.materresbull.2013.06.072

    Article  CAS  Google Scholar 

  7. A. Cross, S. Roslyakov, K. V. Manukyan, et al., J. Phys. Chem. 118, 26191 (2014). https://doi.org/10.1021/jp508546n

    Article  CAS  Google Scholar 

  8. Sh. M. Khaliullin, V. D. Zhuravlev, O. V. Russkikh, et al., Int. J. Self-Propag. High-Temp. Synth. 24, 83. https://doi.org/10.3103/S106138621502003X

  9. Z. Zhu, Y. Zhang, Y. Zhang, et al., Materials 12, 896 (2019). https://doi.org/10.3390/ma12060896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. R. K. Sahu, A. K. Ray, S. K. Das, et al., J. Mater. Res. 21, 1664 (2006). https://doi.org/10.1557/jmr.2006.0211

    Article  CAS  Google Scholar 

  11. E. V. Savinkina, I. A. Karavaev, M. S. Grigoriev, et al., Inorg. Chim. Acta 532, 120759 (2022). https://doi.org/10.1016/j.ica.2021.120759

    Article  CAS  Google Scholar 

  12. B. M. Abu-Zied, Appl. Surf. Sci. 471, 246 (2019). https://doi.org/10.1016/j.apsusc.2018.12.007

    Article  CAS  Google Scholar 

  13. J. J. Kingsley, N. Manickam, and K. C. Patil, Bull. Mater. Sci. 13, 179 (1990). https://doi.org/10.1007/BF02744944

    Article  CAS  Google Scholar 

  14. A. A. Pathan, K. R. Desai, S. Vajapara, and C. P. Bhasin, Adv. Nanopart. 7, 4236 (2018).

    Article  Google Scholar 

  15. A. A. Pathan, K. R. Desai, and C. Bhasin, Int. J. Nano. Chem. 3, 21 (2017). https://doi.org/10.18576/ijnc/030201

    Article  Google Scholar 

  16. K. Deshpande, A. Mukasyan, and A. Varma, Chem. Mater. 16, 4896 (2004). https://doi.org/10.1021/cm040061m

    Article  CAS  Google Scholar 

  17. J. Bai, F. Meng, C. Wei, et al., Ceram. Silik. 55, 20 (2011).

    CAS  Google Scholar 

  18. A. S. Mukasyan and P. Dinka, Int. J. Self-Propag. High-Temp. Synth. 16, 23 (2007). https://doi.org/10.3103/S1061386207010049

    Article  CAS  Google Scholar 

  19. A. A. Voskanyan and K. Y. Chan, J. Exp. Nanosci. 6, 1080 (2015).

    Google Scholar 

  20. S. S. Krishnamurthy and S. Soundararajan, J. Inorg. Nucl. Chem. 28, 1689 (1966). https://doi.org/10.1016/0022-1902(66)80071-4

    Article  Google Scholar 

  21. C. N. Dao, R. Rudert, P. Luger, et al., Acta Crystallogr. C48, 449 (1992). https://doi.org/10.1107/S0108270191009939

    Article  Google Scholar 

  22. S. S. Krishnamurthy and S. Soundararajan, Can. J. Chem. 47, 995 (1969). https://doi.org/10.1139/v69-157

    Article  CAS  Google Scholar 

  23. C. Hoch, Z. Kristallogr. Cryst. Mater. 235, 401 (2020). https://doi.org/10.1515/zkri-2020-0071

    Article  CAS  Google Scholar 

  24. G. M. Sheldrick, SADABS. Madison, Wisconsin (USA), Bruker AXS (2008).

    Google Scholar 

  25. G. M. Sheldrick, Acta Crystallogr., Sect. A 64, 112 (2008). https://doi.org/10.1107/S0108767307043930

    Article  CAS  Google Scholar 

  26. G. M. Sheldrick, Acta Crystallogr., Sect. C 714, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  27. K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (John Wiley & Sons, Inc., Hoboken, 1997).

    Google Scholar 

  28. B. P. Hay and R. D. Hancock, Coord. Chem. Rev. 21, 61 (2001). https://doi.org/10.1016/S0010-8545(00)00366-0

    Article  Google Scholar 

  29. B. P. Hay, O. Clement, G. Sandrone, and D. A. Dixon, Inorg. Chem. 37, 5887 (1998). https://doi.org/10.1021/ic980641j

    Article  CAS  Google Scholar 

  30. P. E. Hansen, Molecules 26, 2409 (2021). https://doi.org/10.3390/molecules26092409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. X. Shi and W. Bao, Front. Chem. 9, 723718 (2021). https://doi.org/10.3389/fchem.2021.723718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. N. S. Rukk, R. S. Shamsiev, D. V. Al’bov, and S. N. Mudretsova, Fine Chem. Technol. 16, 113 (2021). https://doi.org/10.32362/2410-6593-2021-16-2-113-124

    Article  CAS  Google Scholar 

  33. E. V. Savinkina, I. A. Karavaev, and M. S. Grigoriev, Polyhedron 192, 114875 (2020). https://doi.org/10.1016/j.poly.2020.114875

    Article  CAS  Google Scholar 

  34. I. A. Karavaev, E. V. Savinkina, M. S. Grigor’ev, et al., Russ. J. Inorg. Chem. 67, 1178 (2022). https://doi.org/10.1134/S0036023622080186

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Elemental analysis was performed at the Center for Collective Use of MIREA - Russian Technological University with the support of the Ministry of Education and Science of the Russian Federation within the framework of agreement No. 075-15-2021-689 dated 01.09.2021. X-ray powder diffraction was carried out at the Center for the Collective Use of Physical Methods of Investigation at the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences. Thermal analysis was performed using the equipment of “Research Chemical and Analytical Center NRC “Kurchatov Institute” Shared Research Facilities under project’s financial support by the Russian Federation, represented by the Ministry of Science and Higher Education of the Russian Federation, Agreement No. 075-15-2023-370 dd. 22.02.2023”; single-crystal X-ray diffraction was performed at the Center for the Collective Use of Physical Research Methods of the Frimkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Savinkina.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Avdeeva

Supplementary Information

Figs. S1–S14. IR spectra of complexes.

Figs. S15–S28. Thermal curves of complexes.

Table S1. Assignment of frequencies in IR spectra of complexes of rare-earth nitrates with DMF.

Table S2. Selected bond lengths and bond angles for complex [Pr(H2O)3(DMF)(NO3)3]⋅H2O (III).

Table S3. Characteristics of selected hydrogen bonds in complex [Pr(H2O)3(DMF)(NO3)3]⋅H2O (III).

Table S4. Selected bond lengths and bond angles for complex [Dy(DMF)3(NO3)3] (IX).

Table S5. Selected bond lengths and bond angles for complex [Er(DMF)3(NO3)3] (XI).

Table S6. Selected bond lengths and bond angles for complex [Y(DMF)3(NO3)3] (XV).

11502_2023_3025_MOESM1_ESM.pdf

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Petrichko, M.I., Karavaev, I.A., Savinkina, E.V. et al. Rare-Earth Nitrate Complexes with Dimethylformamide. Russ. J. Inorg. Chem. 68, 415–423 (2023). https://doi.org/10.1134/S0036023623600193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023623600193

Keywords:

Navigation