Skip to main content
Log in

Phase Equilibria and Thermodynamic Properties of Phases in the H2O–Gd(NO3)3 System

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Solid–liquid equilibria in the system H2O–Gd(NO3)3 were measured from –20 to 70°C using the isothermal saturation method. The Pitzer–Simonson–Clegg thermodynamic model was implemented to obtain the temperature dependence of Gd(NO3)3⋅6H2O solubility constant, to calculate salt solubility and to construct a phase diagram of the system from eutectic point to hydrate melting. Thermochemical properties of gadolinium nitrate aqueous solutions, such as dilution enthalpies and heat capacities, were assessed also. The model has shown to be reliable for phase equilibria calculation from –35 to 90°C and from 0 up to ~15 mol % of salt as well as the thermodynamic properties of Gd(NO3)3 aqueous solutions at room temperature and around it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

REFERENCES

  1. E. G. Polyakov, Metallurgy of Rare Earth Metals, 2nd Ed. (Urait, Moscow, 2021) [in Russian].

    Google Scholar 

  2. V. Kryukov, A. Tolstov, and N. Samsonov, ECO 11, 5 (2016). https://doi.org/10.30680/ECO0131-7652-2012-11-5-16

    Article  Google Scholar 

  3. J. Zhang, B. Zhao and B. Schreiner, Separation Hydrometallurgy of Rare Earth Elements (Springer International Publishing, Cham, 2016). https://doi.org/10.1007/978-3-319-28235-0

    Book  Google Scholar 

  4. A. N. Turanov, V. K. Karandashev, Z. P. Burmii, et al., Russ. J. Gen. Chem. 92, 418 (2022). https://doi.org/10.1134/S1070363222030082

    Article  CAS  Google Scholar 

  5. A. S. Arkhipin, A. V. Nesterov, N. A. Kovalenko, and I. A. Uspenskaya, J. Chem. Eng. Data 66, 1694 (2021). https://doi.org/10.1021/acs.jced.0c01006

    Article  CAS  Google Scholar 

  6. S. Radhika, B. N. Kumar, M. L. Kantam, and B. R. Reddy, Sep. Purif. Technol. 75, 295 (2010). https://doi.org/10.1016/j.seppur.2010.08.018

    Article  CAS  Google Scholar 

  7. S. V. Kurdakova, N. A. Kovalenko, V. G. Petrov, and I. A. Uspenskaya, J. Chem. Eng. Data 62, 4337 (2017). https://doi.org/10.1021/acs.jced.7b00696

    Article  CAS  Google Scholar 

  8. S. Chatterjee, E. L. Campbell, D. Neiner et al., J. Chem. Eng. Data 60, 2974 (2015). https://doi.org/10.1021/acs.jced.5b00392

    Article  CAS  Google Scholar 

  9. A. I. Maksimov, N. A. Kovalenko, and I. A. Uspenskaya, Calphad: Comput. Coupling Ph. Diagr. Thermochem. 67, 101683 (2019). https://doi.org/10.1016/j.calphad.2019.101683

    Article  CAS  Google Scholar 

  10. S. Guignot, A. Lassin, C. Christov et al., J. Chem. Eng. Data 64, 345 (2019). https://doi.org/10.1021/acs.jced.8b00859

    Article  CAS  Google Scholar 

  11. A. E. Moiseev, A. V. Dzuban, A. S. Gordeeva, A. S. Arkhipin, and N. A. Kovalenko, J. Chem. Eng. Data 61, 3295 (2016). https://doi.org/10.1021/acs.jced.6b00357

    Article  CAS  Google Scholar 

  12. S. Siekierski, T. Mioduski, and M. Salomon, Eds. IUPAC Solubility Data Series (Pergamon Press Inc., New York, 1983)

    Google Scholar 

  13. R. Moret, Thèse Doctorat (l’Université Lausanne, 1963).

  14. J. A. Rard, L. E. Shiers, D. J. Heiser, and F. H. Spedding, J. Chem. Eng. Data 22, 337 (1977). https://doi.org/10.1021/je60074a015

    Article  CAS  Google Scholar 

  15. Z. Libuś, T. Sadowska, and J. Trzaskowski, J. Chem. Thermodyn. 11, 1151 (1979). https://doi.org/10.1016/0021-9614(79)90107-1

    Article  Google Scholar 

  16. F. H. Spedding, J. L. Derer, M. A. Mohs, and J. A. Rard, J. Chem. Eng. Data 21, 474 (1976). https://doi.org/10.1021/je60071a028

    Article  CAS  Google Scholar 

  17. F. H. Spedding, J. L. Baker, and J. P. Walters, J. Chem. Eng. Data 24, 298 (1979). https://doi.org/10.1021/je60083a033

    Article  CAS  Google Scholar 

  18. A. W. Hakin, J. L. Liu, K. Erickson, J.-V. Munoz, and J. A. Rard, J. Chem. Thermodyn. 37, 153 (2005). https://doi.org/10.1016/j.jct.2004.08.010

    Article  CAS  Google Scholar 

  19. K. S. Pitzer, J. R. Peterson, and L. F. Silvester, J. Solut. Chem. 7, 45 (1978). https://doi.org/10.1007/BF00654217

    Article  CAS  Google Scholar 

  20. A. V. Dzuban, A. A. Galstyan, N. A. Kovalenko, and I. A. Uspenskaya, Russ. J. Phys. Chem. A 95, 2394 (2021). https://doi.org/10.1134/S0036024421120074

    Article  CAS  Google Scholar 

  21. P. M. May and D. Rowland, J. Chem. Eng. Data 62, 2481 (2017). https://doi.org/10.1021/acs.jced.6b01055

    Article  CAS  Google Scholar 

  22. S. L. Clegg and K. S. Pitzer, J. Phys. Chem. 96, 3513 (1992). https://doi.org/10.1021/j100187a061

    Article  CAS  Google Scholar 

  23. S. L. Clegg, K. S. Pitzer, and P. Brimblecombe, J. Phys. Chem. 96, 9470 (1992). https://doi.org/10.1021/j100202a074

    Article  CAS  Google Scholar 

  24. K. S. Pitzer and J. M. Simonson, J. Phys. Chem. 90, 3005 (1986). https://doi.org/10.1021/j100404a042

    Article  CAS  Google Scholar 

  25. C. F. Baes and R. E. Mesmer, The Hydrolysis of Cations (Wiley, New York, 1976).

    Google Scholar 

  26. E. N. Rizkalla and G. R. Choppin, Handbook on the Physics and Chemistry of Rare Earths, vol. 15 (North Holland, 1991).

    Google Scholar 

  27. F. H. Spedding, M. J. Pikal, and B. O. Ayers, J. Phys. Chem. 70, 2440 (1966). https://doi.org/10.1021/j100880a003

    Article  CAS  Google Scholar 

  28. Revised Release on the IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam (The revision only relates to the extension of region 5 to 50 MPa) (The International Association for the Properties of Water and Steam, Lucerne, Switzerland, 2007).

  29. C. M. Criss and F. J. Millero, J. Solut. Chem. 28, 849 (1999). https://doi.org/10.1023/A:1021732214671

    Article  CAS  Google Scholar 

  30. D. A. Kosova, A. L. Voskov, N. A. Kovalenko, and I. A. Uspenskaya, Fluid Phase Equilib. 425, 312 (2016). https://doi.org/10.1016/j.fluid.2016.06.021

    Article  CAS  Google Scholar 

  31. CRC Handbook of Chemistry and Physics, 97th ed., Ed. by W. M. Haynes, D. R. Lide, and T. J. Bruno (Taylor & Francis Group, LLC, Boca Raton, 2017).

    Google Scholar 

  32. L. L. Quill and R. F. Robey, J. Am. Chem. Soc. 59, 1071 (1937). https://doi.org/10.1021/ja01285a031

    Article  CAS  Google Scholar 

Download references

Funding

This work was performed as a part of state order no. 121031300039-1, “Chemical Thermodynamics and Theoretical Materials Science.”

Author information

Authors and Affiliations

Authors

Contributions

A.V. Dzuban and A.V. Nesterov developed the experimental methodology. Sh. Qianchen and A.V. Nesterov obtained experimental results. A.A. Novikov and A.V. Dzuban made theoretical calculations. A.V. Dzuban prepared the draft of the paper. N.A. Kovalenko and I.A. Uspenskaya developed the concept of the study, provided general supervision, and edited the manuscript. All authors participated in the discussion of results.

Corresponding author

Correspondence to N. A. Kovalenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzuban, A.V., Novikov, A.A., Nesterov, A.V. et al. Phase Equilibria and Thermodynamic Properties of Phases in the H2O–Gd(NO3)3 System. Russ. J. Inorg. Chem. 67 (Suppl 2), S177–S183 (2022). https://doi.org/10.1134/S0036023622602537

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023622602537

Keywords:

Navigation