Skip to main content
Log in

Complexing Properties of 2-Hydroxy-5-Ethylphenylphosphonic Acid (H3L). Crystal Structure and Analgesic Activity of [Cu(H2L)22О)2]

  • COORDINATION COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Complex [Cu(H2L)22О)2] has been obtained by the reaction of copper(II) with 2-hydroxy-5-ethylphenylphosphonic acid (H3L), and its structure was studied by X-ray diffraction. Protonation constants of acid H3L and stability constants of its complexes with Cu2+ in water have been determined by potentiometric titration. Complex [Cu(H2L)22О)2] has been found to show low toxicity and high analgesic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.

Similar content being viewed by others

REFERENCES

  1. L. D. Quin, A Guide To Organophosphorus Chemistry (Wiley-Interscience, New York, 2000).

    Google Scholar 

  2. Best Synthetic Methods: Organophosphorus(V) Chemistry, Ed. by C. M. Timperley (Academic Press, London, 2013).

    Google Scholar 

  3. E. De Clercq, Biochem. Pharmacol. 82, 99 (2011). https://doi.org/10.1016/j.bcp.2011.03.02

    Article  CAS  PubMed  Google Scholar 

  4. U. Pradere, E. C. Garnier-Amblard, S. J. Coats, et al., Chem. Rev. 114, 9154 (2014). https://doi.org/10.1021/cr5002035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. C. Queffélec, M. Petit, P. Janvier, et al., Chem. Rev. 112, 3777 (2012). https://doi.org/10.1021/cr2004212

    Article  CAS  PubMed  Google Scholar 

  6. M. A. Shameem and A. Orthaber, Chem. - Eur. J. 22, 10718 (2016). https://doi.org/10.1002/chem.201600005

    Article  CAS  PubMed  Google Scholar 

  7. M. Dutartre, J. Bayardon, and S. Jugé, Chem. Soc. Rev. 45, 5771 (2016). https://doi.org/10.1039/C6CS00031B

    Article  CAS  PubMed  Google Scholar 

  8. I. S. Ivanova, A. B. Ilyukhin, G. S. Tsebrikova, et al., Inorg. Chim. Acta 497, 119095 (2019). https://doi.org/10.1016/j.ica.2019.119095

    Article  CAS  Google Scholar 

  9. I. S. Ivanova, V. E. Baulin, I. N. Polyakova, et al., Russ. J. Gen. Chem. 87, 2574 (2017). https://doi.org/10.1134/S107036321711010X

    Article  CAS  Google Scholar 

  10. M. Zhang, X. Jia, H. Zhu, et al., Org. Biomol. Chem. 17, 2972 (2019). https://doi.org/10.1039/C9OB00129H

    Article  CAS  PubMed  Google Scholar 

  11. V. E. Baulin, I. P. Kalashnikova, Y. B. Vikharev, et al., Russ. J. Gen. Chem. 88, 1786 (2018). https://doi.org/10.1134/S1070363218090049

    Article  CAS  Google Scholar 

  12. I. S. Ivanova, V. E. Baulin, E. N. Pyatova, et al., Russ. J. Gen. Chem. 88, 1867 (2018). https://doi.org/10.1134/S1070363218090177

    Article  CAS  Google Scholar 

  13. J. E. Weder, C. T. Dillon, T. W. Hambley, et al., Coord. Chem. Rev. 232, 95 (2002). https://doi.org/10.1016/S0010-8545(02)00086-3

    Article  CAS  Google Scholar 

  14. E. Novak, D. W. Osborne, L. E. Matheson, et al., Drug Dev. Ind. Pharm. 17, 373 (1991). https://doi.org/10.3109/03639049109043833

    Article  CAS  Google Scholar 

  15. T. W. Hambley, Dalton Trans. 43, 4929 (2007). https://doi.org/10.1039/b706075k

    Article  CAS  Google Scholar 

  16. S. H. van Rijt and P. J. Sadler, Drug Discov. Today 14, 1089 (2009). https://doi.org/10.1016/j.drudis.2009.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. L. Ronconi and P. J. Sadler, Coord. Chem. Rev. 251, 1633 (2007). https://doi.org/10.1016/j.ccr.2006.11.017

    Article  CAS  Google Scholar 

  18. K. H. Thompson and C. Orvig, Science 300, 936 (2003). https://doi.org/10.1126/science.1083004

    Article  CAS  PubMed  Google Scholar 

  19. M. Wehbe, A. W. Y. Leung, M. J. Abrams, et al., Dalton Trans. 46, 10758 (2017). https://doi.org/10.1039/c7dt01955f

    Article  CAS  PubMed  Google Scholar 

  20. R. Malekshah, M. Salehi, M. Kubicki, et al., J. Coord. Chem. 71, 952 (2018). https://doi.org/10.1080/00958972.2018.1447668

    Article  CAS  Google Scholar 

  21. M. H. Sadhu, S. B. Kumar, J. K. Saini, et al., Inorg. Chim. Acta 466, 219 (2017). https://doi.org/10.1016/j.ica.2017.06.006

    Article  CAS  Google Scholar 

  22. U. Ndagi, N. Mhlongo, and M. E. Soliman, Drug Des., Dev. Ther. 11, 599 (2017). https://doi.org/10.2147/DDDT.S119488

    Article  CAS  Google Scholar 

  23. M. Shabbir, Z. Akhter, H. Ismail, et al., J. Mol. Struct. 1146, 57 (2017). https://doi.org/10.1016/j.molstruc.2017.05.127

    Article  CAS  Google Scholar 

  24. Z. Piri, Z. Moradi-Shoeili, and A. Assoud, Inorg. Chem. Commun. 84, 122 (2017). https://doi.org/10.1016/j.inoche.2017.08.005

    Article  CAS  Google Scholar 

  25. A. Jayamani, N. Sengottuvelan, and G. Chakkaravarthi, Polyhedron 81, 764 (2014). https://doi.org/10.1016/j.poly.2014.05.076

    Article  CAS  Google Scholar 

  26. N. Uzun, A. T. Colak, F. M. Emen, et al., J. Coord. Chem. 68, 949 (2015). https://doi.org/10.1080/00958972.2014.1003371

    Article  CAS  Google Scholar 

  27. X. Ling, C. S. Cutler, and C. J. Anderson, The Radiopharmaceutical Chemistry of the Radioisotopes of Copper (Springer Nature, Switzerland AG, 2019). https://doi.org/10.1007/978-3-319-98947-1_19

  28. N. Bandara, A. K. Sharma, S. Krieger, et al., J. Am. Chem. Soc. 139, 12550 (2017). https://doi.org/10.1021/jacs.7b05937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. M. A. Orlova, T. P. Trofimova, N. S. Zolotova, et al., Russ. Chem. Bull. Int. Ed 68, 1933 (2019). https://doi.org/10.1007/s11172-019-2649-2

    Article  CAS  Google Scholar 

  30. L. E. McInnes, A. Noor, K. Kysenius, et al., Inorg. Chem. 58, 3382 (2019). https://doi.org/10.1021/acs.inorgchem.8b03466

    Article  CAS  PubMed  Google Scholar 

  31. S. Shuvaev, O. Kotova, V. Utochnikova, et al., Inorg. Chem. Commun. 20, 73 (2012). https://doi.org/10.1016/j.inoche.2012.02.020

    Article  CAS  Google Scholar 

  32. S. Shuvaev, I. S. Bushmarinov, I. Sinev, et al., Eur. J. Inorg. Chem. 27, 4823 (2013). https://doi.org/10.1002/ejic.201300540

    Article  CAS  Google Scholar 

  33. G. S. Tsebrikova, R. T. Barsamian, V. P. Solov’ev, et al., Russ. Chem. Bull. Int. Ed. 67, 2184 (2018). https://doi.org/10.1007/s11172-018-2352-8

    Article  CAS  Google Scholar 

  34. V. P. Solov’ev, ChemEqui Software for Calculating Chemical Equilibrium Constants and Related Parameters Based on Experimental Results of Physicochemical Methods such as UV, IR and NMR Spectroscopy, Calorimetry, Potentiometry and Conductometry. http://vpsolovev.ru/programs/ (Application Date August 12, 2020).

  35. V. P. Solov’ev and A. Y. Tsivadze, Prot. Met. Phys. Chem. Surfaces 51, 1 (2015). https://doi.org/10.1134/S2070205115010153

    Article  CAS  Google Scholar 

  36. P. H. Müller, P. Neumann, and R. Storm, Tafeln der Mathematischen Statistik (VEB Fachbuchverlag, Leipzig, 1979).

    Google Scholar 

  37. S. Bandyopadhyay, A. Das, G. N. Mukherjee, et al., Inorg. Chim. Acta 357, 3563 (2004). https://doi.org/10.1016/j.ica.2004.05.010

    Article  CAS  Google Scholar 

  38. M. Ali, M. Pant, and A. Abraham, Trans. Inst. Meas. Control 34, 691 (2012). https://doi.org/10.1177/0142331211403032

    Article  Google Scholar 

  39. Bruker AXS Inc., APEX3 and SAINT 2016.

  40. G. M. Sheldrick, SADABS, Program for Empirical Absorption Correction of Area Detector Data (1997).

  41. G. M. Sheldrick, Acta Crystallogr., Sect. C 71, 3 (2015). https://doi.org/10.1107/S2053229614024218

    Article  CAS  Google Scholar 

  42. M. L. Belen’kii, Elements of Quantitative Assessment of Pharmacological Effect (Meditsinskaya Literatura, Leningrad, 1963) [in Russian].

    Google Scholar 

  43. G. S. Tsebrikova, I. N. Polyakova, V. P. Solov’ev, et al., Inorg. Chim. Acta 478, 250 (2018). https://doi.org/10.1016/j.ica.2018.04.007

    Article  CAS  Google Scholar 

  44. B. E. Baulin, M. A. Kiskin, I. S. Ivanova, et al., Russ. J. Inorg. Chem. 57, 671 (2012). https://doi.org/10.1134/S0036023612050038

    Article  CAS  Google Scholar 

  45. V. E. Baulin, L. K. Minacheva, I. S. Ivanova, et al., Russ. J. Inorg. Chem. 56, 1222 (2011). https://doi.org/10.1134/S0036023611080043

    Article  CAS  Google Scholar 

  46. V. E. Baulin, L. K. Minacheva, I. S. Ivanova, et al., Russ. J. Inorg. Chem. 56, 1232 (2011). https://doi.org/10.1134/S0036023611080055

    Article  CAS  Google Scholar 

  47. S. V. Demin, S. E. Nefedov, V. E. Baulin, et al., Russ. J. Coord. Chem. 39, 333 (2013). https://doi.org/10.1134/S1070328413040052

    Article  CAS  Google Scholar 

  48. I. N. Polyakova, V. E. Baulin, I. S. Ivanova, et al., Crystallogr. Rep. 60, 57 (2015). https://doi.org/10.1134/S1063774515010162

    Article  CAS  Google Scholar 

  49. L. J. Bellamy, The Infra-Red Spectra of Complex Molecules (Methuen & Co. LTD, John Wiley & Sons, Inc., London–New York, 1954).

  50. K. Nakanishi, Infrared Absorption Spectroscopy (Holden-Day, Inc., San Francisco; Nankodo Company Limited, Tokyo, 1962).

  51. C. O. Nuallain, J. Inorg. Nucl. Chem. 36, 339 (1974). https://doi.org/10.1016/0022-1902(74)80020-5

    Article  CAS  Google Scholar 

  52. L. H. J. Lajunen, R. Portanova, J. Piispanen, et al., Pure Appl. Chem. 69, 329 (1997). https://doi.org/10.1351/pac199769020329

    Article  CAS  Google Scholar 

  53. G. Venkatnarayana, S. Swamy, and P. Lingaiah, Indian J. Chem. 23 (1984).

  54. M. Puchoňová, S. Matejová, V. Jorík, et al., Polyhedron 151, 152 (2018). https://doi.org/10.1016/j.poly.2018.05.036

    Article  CAS  Google Scholar 

  55. Y. F. Al Ansari and V. E. Baulin, Russ. J. Inorg. Chem. 64, 550 (2019). https://doi.org/10.1134/S0036023619040028

    Article  CAS  Google Scholar 

  56. T. I. Ignat’eva, V. E. Baulin, E. N. Tsvetkov, and O. A. Raevskii, Zh. Obshch. Kh. 60, 1503 (1990).

    Google Scholar 

  57. V. Solov’ev, A. Varnek, and A. Tsivadze, J. Comput. Aided Mol. Des. 28, 549 (2014). https://doi.org/10.1007/s10822-014-9741-3

    Article  CAS  PubMed  Google Scholar 

  58. C. Doutremepuich, Thrombosis 2012, 626289 (2012). https://doi.org/10.1155/2012/626289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. C. M. Turnbull, A. G. Rossi, and I. L. Megson, Expert Opin. Ther. Targets 10, 911 (2006). https://doi.org/10.1517/14728222.10.6.911

    Article  CAS  PubMed  Google Scholar 

  60. F. Buttgereit, G. R. Burmester, and L. S. Simon, Am. J. Med. 110, 13 (2001). https://doi.org/10.1016/s0002-9343(00)00728-2

    Article  Google Scholar 

  61. T. Jacka, C. C. A. Bernard, and G. Singer, Life Sci. 32, 1023 (1983). https://doi.org/10.1016/0024-3205(83)90934-7

    Article  CAS  PubMed  Google Scholar 

  62. M. O’Connor, A. Kellett, M. McCann, et al., J. Med. Chem. 55, 1957 (2012). https://doi.org/10.1021/jm201041d

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was performed under the State Assignment for the Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, Institute of Physiologically Active Substances, Russian Academy of Sciences (project no. 0090-2019-0008) and with partial financial support of the Russian Science Foundation (project nos. 19-13-00294 (constants computations) and 21-43-00020 (testing of biological activity)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. S. Tsebrikova.

Ethics declarations

The authors declare no conflicts of interest.

Additional information

Translated by I. Kudryavtsev

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivanova, I.S., Tsebrikova, G.S., Rogacheva, Y.I. et al. Complexing Properties of 2-Hydroxy-5-Ethylphenylphosphonic Acid (H3L). Crystal Structure and Analgesic Activity of [Cu(H2L)22О)2]. Russ. J. Inorg. Chem. 66, 1846–1853 (2021). https://doi.org/10.1134/S0036023621120068

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023621120068

Keywords:

Navigation