Skip to main content
Log in

Experimental Modeling of Technetium(VII) Recovery from Raffinates after Extractive Reprocessing of Spent Nuclear Fuel

  • PHYSICAL CHEMISTRY OF SOLUTIONS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Experimental justification has been provided for the possibility of extractive isolation of technetium from raffinate of technical process of affinage of uranium–plutonium product resulting from hydrometallurgical reprocessing of spent nuclear fuel (SNF). Technetium (VII) from aqueous solution of Zr(IV) (10 g/L) and 4 mol/L HNO3 with small content of ZrOb+ and \({\text{Z}}{{{\text{r}}}_{{\text{2}}}}{\text{O}}_{{\text{3}}}^{{b + }}\) oxocations is recovered by 80% in 30% TBP in hydrocarbon diluent over seven stages of counter-current continuous cascade at ratio O : A = 1 : 1. Variation in phase flow ratio for cascade part leads to virtually complete Tc(VII) extraction in organic phase over ten stages. Technetium(VII) is selectively back extracted from loaded organic phase with water virtually completely over eleven stages of counter-current continuous cascade. Technological extraction scheme for technetium isolation from SNF solutions has been proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. O. Adamov, A. V. Dzhalavyan, A. V. Lopatkin, et al., At. Energy 112, 391 (2012). https://doi.org/10.1007/s10512-012-9574-x

    Article  CAS  Google Scholar 

  2. A. Yu. Shadrin, V. B. Ivanov, M. V. Skupov, et al., At. Energy 121, 119 (2016). https://doi.org/10.1007/s10512-016-0171-2

    Article  CAS  Google Scholar 

  3. A. Yu. Shadrin, K. N. Dvoeglazov, A. G. Maslennikov, et al., Radiochemistry 58, 271 (2016). https://doi.org/10.1134/S1066362216030085

    Article  CAS  Google Scholar 

  4. P. N. Alekseev, A. Yu. Gagarinskii, N. E. Kukharkin, et al., At. Energy 122, 143 (2017). https://doi.org/10.1007/s10512-017-0249-5

    Article  CAS  Google Scholar 

  5. A. Yu. Shadrin, K. N. Dvoeglazov, V. A. Kascheev, et al., Procedia Chem. 21, 148 (2016). https://doi.org/10.1016/j.proche.2016.10.021

    Article  Google Scholar 

  6. B. Ya. Zilberman, E. A. Puzikov, D. V. Ryabkov, et al., At. Energy 107, 333 (2009). https://doi.org/10.1007/s10512-010-9233-z

    Article  CAS  Google Scholar 

  7. F. G. Reshetnikov, At. Energy 91, 998 (2001). https://doi.org/10.1023/A:1014811604126

  8. N. D. Goletskii, B. Y. Zilberman, Y. S. Fedorov, et al., Radiochemistry 56, 501 (2014). https://doi.org/10.1134/S1066362214050099

    Article  CAS  Google Scholar 

  9. K. V. Bugrov, V. G. Korotaev, K. K. Korchenkin, et al., Khim. Tekhnol. (Moscow, Russ. Fed.) 19, 454 (2018).

  10. A. S. Kudinov, N. D. Goletsky, B. Ya. Zilberman, et al., At. Energy 114, 344 (2013). https://doi.org/10.1007/s10512-013-9722-y

    Article  CAS  Google Scholar 

  11. L. N. Podrezova, V. I. Volk, K. N. Dvoeglazov, et al., Radiation & Applications 2, 164 (2017). https://doi.org/10.21175/RadJ.2017.03.034

    Article  Google Scholar 

  12. V. N. Alekseenko, K. N. Dvoeglasov, V. I. Marchenko, et al., J. Radioanal. Nucl. Chem. 304, 201 (2015). https://doi.org/10.1007/s10967-014-3882-7

    Article  CAS  Google Scholar 

  13. J. Durain, D. Bourgeois, M. Bertrand, et al., Solvent Extr. Ion Exch. 37, 328 (2019). https://doi.org/10.1080/07366299.2019.1656853

    Article  CAS  Google Scholar 

  14. K. E. German, M. S. Grigoriev, C. Den Auwer, et al., Russ. J. Inorg. Chem. 58, 691 (2013). https://doi.org/10.1134/S0036023613060090

    Article  CAS  Google Scholar 

  15. V. S. Sergienko, Russ. J. Inorg. Chem. 64, 317 (2019). https://doi.org/10.1134/S0036023619030185

    Article  CAS  Google Scholar 

  16. V. S. Sergienko, Russ. J. Inorg. Chem. 64, 583 (2019). https://doi.org/10.1134/S0036023619050164

    Article  CAS  Google Scholar 

  17. A. A. Zaitsev, I. A. Lebedev, S. V. Pirozhkov, et al., Radiokhimiya 6, 440 (1964).

    CAS  Google Scholar 

  18. K. H. Lieser, A. Kruger, and R. N. Singh, Radiochim. Acta 28, 97 (1981). https://doi.org/10.1524/ract.1981.28.2.97

    Article  CAS  Google Scholar 

  19. D. J. Pruett, Radiochim. Acta 28, 153 (1981). https://doi.org/10.1524/ract.1981.28.3.153

    Article  CAS  Google Scholar 

  20. T. N. Jassim, J. O. Liljenzin, R. Lundqvist, et al., Solvent Extr. Ion Exch. 2, 405 (1984). https://doi.org/10.1080/07366298408918455

    Article  CAS  Google Scholar 

  21. J. Garraway and P. D. Wilson, J. Less-Common Met. 106, 183 (1985). https://doi.org/10.1016/0022-5088[85]90379-0

    Article  CAS  Google Scholar 

  22. D. J. Pruett and D. R. McTaggart, J. Inorg. Nucl. Chem. 43, 2109 (1981). https://doi.org/10.1016/0022-1902[81]80559-3

    Article  CAS  Google Scholar 

  23. Z. Kolaric and P. Dressler, Solvent Extr. Ion Exch. 7, 625 (1989). https://doi.org/10.1080/07360298908962328

    Article  Google Scholar 

  24. E. A. Puzikov, B. Y. Zilberman, Y. S. Fedorov, et al., Radiochemistry 57, 273 (2015). https://doi.org/10.1134/S106636221503008X

    Article  CAS  Google Scholar 

  25. E. A. Puzikov, B. Ya. Zilberman, Yu. S. Fedorov, et al., Radiochemistry 55, 481 (2013). https://doi.org/10.1134/S1066362213050056

    Article  CAS  Google Scholar 

  26. Yu. I. Dytnerskii, Basic Processes and Equipment in Chemical Technology: Manual for Design (Khimiya, Moscow, 1991) [in Russian].

    Google Scholar 

  27. R. E. Treybal, Liquid Extraction (McGraw-Hill, New York, 1963).

    Google Scholar 

  28. L. Alders, Liquid–Liquid Extraction: Theory and Laboratory Practice (Elsevier, Amsterdam, 1959).

    Google Scholar 

Download references

Funding

This work was supported by the Proryv project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Safiulina.

Ethics declarations

The authors declare no conflict of interest.

Additional information

Translated by I. Kudryavtsev

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Safiulina, A.M., Anan’ev, A.V., Lizunov, A.V. et al. Experimental Modeling of Technetium(VII) Recovery from Raffinates after Extractive Reprocessing of Spent Nuclear Fuel. Russ. J. Inorg. Chem. 65, 1928–1934 (2020). https://doi.org/10.1134/S0036023620120141

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620120141

Keywords:

Navigation