Skip to main content
Log in

Formation of Hierarchical NiO Coatings on the Surface of Al2O3 Substrates under Hydrothermal Conditions

  • SYNTHESIS AND PROPERTIES OF INORGANIC COMPOUNDS
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

A hierarchical nickel oxide film was grown on the surface of a polycrystalline Al2O3 substrate by hydrothermal synthesis. The microstructure of the obtained coating was studied by scanning electron microscopy and atomic force microscopy, which showed that this coating comprises porous nanosheets (about 7 nm thick) arranged at various angles to each other and to the surface of the substrate. The lateral sizes of these nanosheets were in the range 3–5 μm. The local electrophysical characteristics of the obtained oxide coating were investigated by scanning capacitance microscopy and Kelvin probe force microscopy; using the obtained results, the maps of the distributions of the surface potential and capacitance contrast over the surface of the NiO film were constructed, and the work function of the surface of this film was calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. K. O. Ukoba, A. C. Eloka-Eboka, and F. L. Inambao, J. Renewable Sustainable Energy 82, 2900 (2018). https://doi.org/10.1016/j.rser.2017.10.041

    Article  CAS  Google Scholar 

  2. S.-I. Kim, J.-S. Lee, and H.-J. Ahn, et al., ACS Appl. Mater. Interfaces 5, 1596 (2013). https://doi.org/10.1021/am3021894

    Article  CAS  PubMed  Google Scholar 

  3. K. S. Khashan, G. M. Sulaiman, A. H. Hamad, et al., Appl. Phys. A 123, 190 (2017). https://doi.org/10.1007/s00339-017-0826-4

    Article  CAS  Google Scholar 

  4. Y. Koshtyal, D. Nazarov, I. Ezhov, et al., Coatings 9, 301 (2019). https://doi.org/10.3390/coatings9050301

    Article  CAS  Google Scholar 

  5. N. Kaur, J. Singh, G. Kaur, et al., Micro Nano Lett. 14, 856 (2019). https://doi.org/10.1049/mnl.2018.5489

    Article  CAS  Google Scholar 

  6. R. Krishnakanth, G. Jayakumar, A. A. Irudayaraj, and A. D. Raj, Mater. Today: Proc. 3, 1370 (2016). https://doi.org/10.1016/j.matpr.2016.04.017

    Article  Google Scholar 

  7. N. N. M. Zorkipli, N. H. M. Kaus, and A. A. Mohammad, Procedia Chem. 19, 626 (2016). https://doi.org/10.1016/j.proche.2016.03.062

    Article  CAS  Google Scholar 

  8. M. Jlassi, I. Sta, M. Hajji, and H. Ezzaouia, Surf. Interfaces 6, 218 (2017). https://doi.org/10.1016/j.surfin.2016.10.006

    Article  CAS  Google Scholar 

  9. J. D. Desai, J. Mater. Sci.: Mater. Electron. 27, 12329 (2016). https://doi.org/10.1007/s10854-016-5617-8

    Article  CAS  Google Scholar 

  10. R. A. Ismail, S. Ghafori, and G. A. Kadhim, Appl. Nanosci. 3, 509 (2013). https://doi.org/10.1007/s13204-012-0152-2

    Article  CAS  Google Scholar 

  11. B. Ortiz-Cruz, M. A. Garcia-Lobato, E. R. Larios-Durán, et al., J. Electroanal. Chem. 772, 38 (2016). https://doi.org/10.1016/j.jelechem.2016.04.020

    Article  CAS  Google Scholar 

  12. M. Bonomo, D. D. Girolamo, M. Piccinni, et al., Nanomaterials 10, 167 (2020). https://doi.org/10.3390/nano10010167

    Article  CAS  PubMed Central  Google Scholar 

  13. Y. Wang and Q. Su, J. Mater. Sci.: Mater. Electron. 27, 4752 (2016). https://doi.org/10.1007/s10854-016-4355-2

    Article  CAS  Google Scholar 

  14. Y. Du, W. Wang, X. Li, et al., Mater. Lett. 68, 168 (2012). https://doi.org/10.1016/j.matlet.2011.10.039

    Article  CAS  Google Scholar 

  15. T. L. Simonenko, V. M. Ivanova, N. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1753 (2019). https://doi.org/10.1134/S0036023619140080

    Article  CAS  Google Scholar 

  16. D. A. Brewster, Y. Bian, and K. E. Knowles, Chem. Mater. 32, 2004 (2020). https://doi.org/10.1021/acs.chemmater.9b05045

    Article  CAS  Google Scholar 

  17. M. Yao, Z. Hu, Z. Xu, et al., Electrochim. Acta 158, 96 (2015). https://doi.org/10.1016/j.electacta.2014.12.058

    Article  CAS  Google Scholar 

  18. M. A. Wahab and F. Darain, Nanotechnology 25, 165701 (2014). https://doi.org/10.1088/0957-4484/25/16/165701

    Article  CAS  PubMed  Google Scholar 

  19. T. L. Simonenko, M. V. Kalinina, N. P. Simonenko, et al., Int. J. Hydrogen Energy 44, 20345 (2019). https://doi.org/10.1016/j.ijhydene.2019.05.231

    Article  CAS  Google Scholar 

  20. T. L. Egorova, M. V. Kalinina, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 62, 1283 (2017). https://doi.org/10.1134/S0036023617100072

    Article  Google Scholar 

  21. M. V. Kalinina, L. V. Morozova, I. I. Khlamov, et al., Glass Phys. Chem. 40, 578 (2014). https://doi.org/10.1134/S108765961405006X

    Article  CAS  Google Scholar 

  22. S. Ding, T. Zhu, J. S. Chen, et al., J. Mater. Chem. 21, 6602 (2011). https://doi.org/10.1039/c1jm00017a

    Article  CAS  Google Scholar 

  23. C. Hao, S. Zhou, J. Wang, et al., Ind. Eng. Chem. Res. 57, 2517 (2018). https://doi.org/10.1021/acs.iecr.7b04412

    Article  CAS  Google Scholar 

  24. D. Ma, G. Shi, H. Wang, et al., Nanoscale 5, 4808 (2013). https://doi.org/10.1039/c3nr00887h

    Article  CAS  PubMed  Google Scholar 

  25. T. P. Mokoena, H. C. Swart, and D. E. Motaung, J. Alloys Compd. 805, 267 (2019). https://doi.org/10.1016/j.jallcom.2019.06.329

    Article  CAS  Google Scholar 

  26. T. L. Simonenko, N. P. Simonenko, E. P. Simonenko, et al., Russ. J. Inorg. Chem. 64, 1475 (2019). https://doi.org/10.1134/S0036023619120167

    Article  CAS  Google Scholar 

  27. J. He, M. R. Nielsen, T. W. Hansen, et al., Catal. Sci. Technol. 9, 1289 (2019). https://doi.org/10.1039/C8CY02536C

    Article  CAS  Google Scholar 

  28. S. Abualela, X. Lv, Y. Hu, and M. D. Abd-Alla, Mater. Lett. 268, 127622 (2020). https://doi.org/10.1016/j.matlet.2020.127622

    Article  CAS  Google Scholar 

  29. L. Sui, T. Yu, D. Zhao, et al., J. Hazard. Mater. 385, 121570 (2020). https://doi.org/10.1016/j.jhazmat.2019.121570

    Article  CAS  PubMed  Google Scholar 

  30. L. Yang, X. Zhao, R. Yang, et al., Appl. Surf. Sci. 491, 294 (2019). https://doi.org/10.1016/j.apsusc.2019.06.160

    Article  CAS  Google Scholar 

  31. L. Zhang, X. Song, L. Tan, et al., New J. Chem. 43, 13457 (2019). https://doi.org/10.1039/C9NJ02626F

    Article  CAS  Google Scholar 

  32. N. Padmanathan, H. Shao, D. McNulty, et al., J. Mater. Chem. A 4, 4820 (2016). https://doi.org/10.1039/C5TA10407F

    Article  CAS  Google Scholar 

  33. Y. Pang, J. Zhang, D. Chen, and X. Jiao, RSC Adv. 6, 30395 (2016). https://doi.org/10.1039/C5RA27715A

  34. Y. Zhang, Y.-Q. Liu, Y. Bai, et al., Sens. Actuators, B 309, 127779 (2020). https://doi.org/10.1016/j.snb.2020.127779

    Article  CAS  Google Scholar 

  35. Y. J. Zhu, Y. H. Tang, K. L. Zhou, et al., Int. J. Electrochem. Sci. 14, 7401 (2019). https://doi.org/10.20964/2019.08.32

    Article  CAS  Google Scholar 

  36. Z. H. Ibupoto, S. Elhag, M. S. AlSalhi, et al., Electroanalysis 26, 1773 (2014). https://doi.org/10.1002/elan.201400116

    Article  CAS  Google Scholar 

  37. G. M. H. Shahariar and O. T. Lim, Energies 12, 125 (2019). https://doi.org/10.3390/en12010125

    Article  CAS  Google Scholar 

  38. Z.-H. Liang, Y.-J. Zhu, and X.-L. Hu, J. Phys. Chem. B 108, 3488 (2004). https://doi.org/10.1021/jp037513n

    Article  CAS  Google Scholar 

  39. M. T. Greiner, M. G. Helander, Z.-B. Wang, et al., J. Phys. Chem. 114, 19777 (2010). https://doi.org/10.1021/jp108281m

    Article  CAS  Google Scholar 

  40. S. Battiato, M. M. Giangregorio, M. R. Catalano, et al., RSC Adv. 6, 30813 (2016). https://doi.org/10.1039/C6RA05510A

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Russian Science Foundation (project no. 19-73-00354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. L. Simonenko.

Ethics declarations

The authors declare that they have no conflicts of interest.

Additional information

Translated by V. Glyanchenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Simonenko, T.L., Bocharova, V.A., Gorobtsov, P.Y. et al. Formation of Hierarchical NiO Coatings on the Surface of Al2O3 Substrates under Hydrothermal Conditions. Russ. J. Inorg. Chem. 65, 1292–1297 (2020). https://doi.org/10.1134/S0036023620090193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023620090193

Keywords:

Navigation