Skip to main content
Log in

The Effect of CdSe and InP Quantum Dots on the Interaction of ZnO with NO2 under Visible Light Irradiation

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

Nanocomposites based on nanocrystalline ZnO and CdSe and InP nanocrystals (quantum dots) have been synthesized by chemical precipitation and high-temperature colloidal synthesis. The microstructure parameters of the oxide matrix and the size of the CdSe and InP nanocrystals have been determined. A correlation was established between the spectral dependence of the photoconductivity of nanocomposites and the optical absorption spectra of quantum dots. The influence of CdSe and InP quantum dots on the interaction of ZnO with NO2 under visible light irradiation has been studied. It has been shown that the synthesized nanocomposites can be used to detect NO2 under illumination with green light without additional thermal heating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Gurlo, Metal Oxide Nanomaterials for Chemical Sensors (Springer, New York, 2013).

    Google Scholar 

  2. T. Wolkenstein, Adv. Catal. 12, 189 (1960).

    Google Scholar 

  3. V. Kiselev, S. Kozlov, and A. Zoteev, Fundamentals of the Physics of Solid Surfaces (Izd. MGU, Moscow, 1999) [in Russian].

    Google Scholar 

  4. E. Comini, G. Faglia, and G. Sberveglieri, Sens. Actuat. B 78, 73 (2001).

    Article  CAS  Google Scholar 

  5. K. Anothainart, M. Burgmair, A. Karthigeyan, et al., Sens. Actuat. B 93, 580 (2003).

    Article  CAS  Google Scholar 

  6. J. D. Prades, R. Jimenez-Diaz, M. Manzanares, et al., Phys. Chem. Chem. Phys. 11, 10881 (2009).

    Article  CAS  Google Scholar 

  7. J. D. Prades, R. Jimenez-Diaz, F. Hernandez-Ramirez, et al., Sens. Actuat. B 140, 337 (2009).

    Article  CAS  Google Scholar 

  8. S. Fan, A. K. Srivastava, and V. P. Dravid, Appl. Phys. Lett. 95, 142106 (2009).

    Article  Google Scholar 

  9. G. Lu, J. Xu, J. Sun, et al., Sens. Actuat. B 162, 82 (2012).

    Article  CAS  Google Scholar 

  10. I. Karaduman, Ö. Barin, D. Esra, et al., J. Appl. Phys. 118, 174501 (2015).

    Article  Google Scholar 

  11. Ch.-L. Hsu, L.-F. Chang, and T.-J. Hsueh, Sens. Actuat. B 249, 265 (2017).

    Article  CAS  Google Scholar 

  12. H. Chen, Y. Liu, C. Xie, et al., Ceram. Int. 38, 503 (2012).

    Article  CAS  Google Scholar 

  13. L. Han, D. Wang, J. Cui, et al., J. Mater. Chem. 22, 12915 (2012).

    Article  CAS  Google Scholar 

  14. Q. Geng, Z. He, X. Chen, et al., Sens. Actuat. B 188, 293 (2013).

    Article  CAS  Google Scholar 

  15. A. M. Gulyaev, Le Van Van, O. B. Sarach, and O. B. Mukhina, Semiconductors 42, 726 (2008).

    Article  CAS  Google Scholar 

  16. R. B. Vasiliev, A. V. Babynina, O. A. Maslova, et al., J. Mater. Chem. C 1, 1005 (2013).

    Article  CAS  Google Scholar 

  17. A. S. Chizhov, M. N. Rumyantseva, R. B. Vasiliev, et al., Sens. Actuat. B 205, 305 (2014).

    Article  CAS  Google Scholar 

  18. A. Chizhov, M. Rumyantseva, R. Vasiliev, et al., Thin Solid Films 618, 253 (2016).

    Article  CAS  Google Scholar 

  19. N. Vorobyeva, M. Rumyantseva, D. Filatova, et al., Sens. Actuat. B 182, 555 (2013).

    Article  CAS  Google Scholar 

  20. C. B. Murray, S. Sun, W. Gaschler, et al., IBM J. Res. Dev. 45, 47 (2001).

    Article  CAS  Google Scholar 

  21. N. Mordvinova, A. Vinokurov, S. Dorofeev, et al., J. Alloys Compd. 582, 43 (2014).

    Article  CAS  Google Scholar 

  22. V. I. Klimov, Ann. Rev. Phys. Chem. 58, 635 (2007).

    Article  CAS  Google Scholar 

  23. D. Hou, A. Dev, K. Frank, et al., J. Phys. Chem. C 116, 19604 (2012).

    Article  CAS  Google Scholar 

  24. V. Stevanovic, S. Lany, D. S. Ginley, et al., Phys. Chem. Chem. Phys. 16, 3706 (2014).

    Article  CAS  Google Scholar 

  25. L. I. Berger, Semiconductor Materials (CRC Press, 1996).

    Google Scholar 

  26. B. Carlson, K. Leschkies, E. S. Aydil, and X.-Y. Zhu, J. Phys. Chem. C 112, 8419 (2008).

    Article  CAS  Google Scholar 

  27. K. Tvrdy, P. A. Frantsuzov, and P. V. Kamat, Proc. Natl. Acad. Sci. USA 108, 29 (2011).

    Article  CAS  Google Scholar 

  28. V. F. Kiselev and O. V. Krylov, Springer Ser. Surf. Sci. 9, 190 (2012).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. N. Rumyantseva.

Additional information

Original Russian Text © A.S. Chizhov, N.E. Mordvinova, M.N. Rumyantseva, I.V. Krylov, K.A. Drozdov, Xiaogan Li, A.M. Gas’kov, 2018, published in Zhurnal Neorganicheskoi Khimii, 2018, Vol. 63, No. 4, pp. 480–486.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chizhov, A.S., Mordvinova, N.E., Rumyantseva, M.N. et al. The Effect of CdSe and InP Quantum Dots on the Interaction of ZnO with NO2 under Visible Light Irradiation. Russ. J. Inorg. Chem. 63, 512–518 (2018). https://doi.org/10.1134/S0036023618040071

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618040071

Navigation