Skip to main content
Log in

Highly Selective Lead(II) Coated Graphite Sensor Based on 4,13-Didecyl-1,7,10,16-tetraoxa-4,13- diazacyclooctadecane as a Neutral Ionophore

  • Physical Methods of Investigation
  • Published:
Russian Journal of Inorganic Chemistry Aims and scope Submit manuscript

Abstract

4,13-Didecyl-1,7,10,16-tetraoxa-4,13-diazacyclooctadecane (kryptofix22DD) has been explored as a neutral ionophore for preparing polyvinyl chloride (PVC)-based membrane sensor selective to lead(II). The optimized membrane incorporating kryptofix22DD as the active material, nitrobenzene as plasticizer and sodium tetraphenylborate as an anion excluder and membrane modifier in PVC (in the weight ratio of 5.0: 63.0: 2.0: 30.0, respectively) was directly coated on the surface of graphite rod. The sensor exhibits a Nernstian slope (29.4 mV/decade) in the concentration range of 1.0 × 10–5 to 1.0 × 10–1 M Pb2+. The detection limit of the sensor is 6.5 × 10–6 M. The proposed sensor has a fast response time (~10 s), a satisfactory reproducibility and relatively long lifetime. The electrode shows high selectivity toward Pb2+ ion in comparison to other common cations. The proposed sensor is suitable for use in aqueous solutions in a wide pH range of 2.0–10.0. It was used as an indicator electrode for the end point detection in the potentiometric titration of Pb2+ ion with ethylenediaminetetraacetic acid (EDTA) and sodium iodide (NaI) solutions. The proposed sensor was successfully applied for the recovery of Pb2+ ions spiked in real water samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Ammann, W. E. Morf, P. Anker et al., Ion-Sel. Electrode Rev. 5, 3 (1983).

    Article  CAS  Google Scholar 

  2. M. E. Mayerhoff and M. N. Opdycke, Adv. Clin. Chem. 26, 1 (1986).

    Google Scholar 

  3. S. Li-Xian, T. Okada, J. P. Collin, and H. Sugihara, Anal. Chim. Acta 329, 57 (1996).

    Article  Google Scholar 

  4. A. Kumar and S. K. Mittal, Sens. Actuators B 99, 340 (2004).

    Article  CAS  Google Scholar 

  5. A. K. Singh and S. Mehtab, Sens. Actuators B 123, 429 (2007).

    Article  CAS  Google Scholar 

  6. A. K. Singh and S. Mehtab, Talanta 74, 806 (2008).

    Article  CAS  Google Scholar 

  7. B. H. Freitas, F. A. Amaral, N. Bocchi, and M. F. S. Teixeira, Electrochim. Acta 55, 5659 (2010).

    Article  CAS  Google Scholar 

  8. F. Bakhtiarzadeh and S. Ab Ghani, J. Electroanal. Chem. 624, 139 (2008).

    Article  CAS  Google Scholar 

  9. G. H. Rounaghi, R. Mohammad Zadeh Kakhki, and H. Sadeghian, Electrochim. Acta 56, 9756 (2011).

    Article  CAS  Google Scholar 

  10. A. Ghaemi, H. Tavakkoli, and T. Mombeni, Mater. Sci. Eng. C 38, 186 (2014).

    Article  CAS  Google Scholar 

  11. R C. Gracia and W. R. Snodgrass, Am. J. Health Syst. Pharm. 64, 45 (2007).

    Article  CAS  Google Scholar 

  12. L. Patrick, Altern. Med. Rev. 11, 2 (2006).

    Google Scholar 

  13. N. C. Papanikolaou, E. G. Hatzidaki, S. Belivanis, et al. Med. Sci. Monit. 11, 329 (2005).

    Google Scholar 

  14. C. C. Su, M. C. Chang, and L. K. Liu, Anal. Chim. Acta 432, 261 (2001).

    Article  CAS  Google Scholar 

  15. S. Sadeghi, G. R. Dashti, and M. Shamsipur, Sens. Actuators B 81, 223 (2002).

    Article  CAS  Google Scholar 

  16. A. Michalska, M. Wojciechowski, E. Bulska, et al., Talanta 79, 1247 (2009).

    Article  CAS  Google Scholar 

  17. I. Ion, A. Culetu, J. Costa, et al., Desalination 259, 38 (2010).

    Article  CAS  Google Scholar 

  18. D. Wilson, M. de los Angeles Arada, S. Alegret, and M. del Valle, J. Hazard. Mater. 181, 140 (2010).

    Article  CAS  Google Scholar 

  19. X. J. Yuan, R. Y. Wang, C. B. Mao, et al., Inorg. Chem. Commun. 15, 29 (2012).

    Article  CAS  Google Scholar 

  20. F. Faridbod, M. R. Ganjali, R. Dinarvand, et al., Sensors 8, 1645 (2008).

    Article  CAS  Google Scholar 

  21. S. Buoen, J. Dale, P. Groth, and J. Krane, J. Chem. Soc., Chem. Commun. 20, 1172 (1982).

    Article  Google Scholar 

  22. R. D. Nobel and J. D. Way, Liquid Membranes: Theory and Applications (American Chemical Society, Washington, DC, 1987).

    Book  Google Scholar 

  23. H. Tsukube, Liquid Membranes: Chemical Applications (CRC Press, Boca Raton, FL, 1990).

    Google Scholar 

  24. G. W. Gokel, Crown Ethers and Cryptands (The Royal Society of Chemistry, London, 1991).

    Google Scholar 

  25. H. Tsukube, K. Yamashita, T. Iwachido, and M. Zenki, J. Org. Chem. 56, 268 (1991).

    Article  CAS  Google Scholar 

  26. M. Hiraoka, Crown Ethers and Analogous Compounds (Elsevier, Amsterdam, 1992).

    Google Scholar 

  27. M. R. Ganjali, H.A. Zamani, P. Norouzi, et al., Bull. Korean Chem. Soc. 26, 579 (2005).

    Article  CAS  Google Scholar 

  28. M. R. Ganjali, M. Tahami, M. Shamsipur, et al., Electroanalysis 15, 1038 (2003).

    Article  CAS  Google Scholar 

  29. M. R. Ganjali, A. Daftari, P. Nourozi, and M. Salavati-Niasari, Anal. Lett. 36, 1511 (2003).

    Article  CAS  Google Scholar 

  30. M. R. Ganjali, L. Hajiagha-Babaei, A. Badiei, et al., Anal. Sci. 20, 725 (2004).

    Article  CAS  Google Scholar 

  31. Genplot, A Data Analysis and Graphical Plotting Program for Scientist and Engineers. Computer Graphic Service (Ltd., Ithaca, New York, USA, 1989).

    Google Scholar 

  32. G. H. Rounaghi, Z. Eshaghi, and E. Ghiamati, Talanta 44, 275 (1997).

    Article  CAS  Google Scholar 

  33. E. Bakker, P. Büuhlmann, and E. Pretsch, Electroanalysis 11, 915 (1999).

    Article  CAS  Google Scholar 

  34. M. A. Arada Pérez, L. Pérez Marín, J. C. Quintana, and M. Yazdani-Pedram, Sens. Actuators B 89, 262 (2003).

    Article  Google Scholar 

  35. P. Buhlmann, E. Pretsch, and E. Bakker, Chem. Rev. 98, 1593 (1998).

    Article  Google Scholar 

  36. D. Ammann, E. Pretsch, W. Simom, E. Lindner, et al., Anal. Chim. Acta 171, 119 (1985).

    Article  CAS  Google Scholar 

  37. T. Rosatzin, E. Bakker, K. Suzuki, and W. Simon, Anal. Chim. Acta 280, 197 (1993).

    Article  CAS  Google Scholar 

  38. Y. Umezawa, P. Buhlmann, K. Umezawa, et al., Pure. Appl. Chem. 72, 1851 (2000).

    Article  CAS  Google Scholar 

  39. A. K. Jain, A. K. Singh, S. Mehtab, and P. Saxena, Anal. Chim. Acta 551, 45 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arezoo Ghaemi.

Additional information

The article is published in the original.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banuti, A.G., Ghaemi, A. Highly Selective Lead(II) Coated Graphite Sensor Based on 4,13-Didecyl-1,7,10,16-tetraoxa-4,13- diazacyclooctadecane as a Neutral Ionophore. Russ. J. Inorg. Chem. 63, 89–97 (2018). https://doi.org/10.1134/S0036023618010023

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0036023618010023

Navigation