Skip to main content
Log in

Structure and Mechanical Properties of Al–Cu–Mg–Si Alloy Prepared by Selective Laser Melting

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The effect of the physical and additive-manufacturing (3D printing) characteristics on the structure and hardness of monolith and netlike articles fabricated from the Al–Cu–Mg–Si alloy by selective laser melting,—is considered. The structure and hardness of monolith samples, which were synthesized at the laser powers P = 100–200 W, scanning speeds V = 400–950 mm/s, and unchanged both laser beam spot diameters of 60 and 75 µm and powder layer thickness of 0.05 mm,—were compared and analysed. It has been found that the hardness of samples synthesized at Р = 200 W and V = 750–900 mm/s is 50HB10/250; the minimum hardness (less than 28HB10/250) is observed for the samples fabricated at V = 400 mm/s and Р = 100 W. Metallographic studies of the structure of samples exhibit the presence of defects, such as shrinkage voids, hot cracks, and non-melt powder particles. Experimental data indicating the correlation between the build geometry of netlike samples characterized by different filling levels (amount and configuration of the internal construction holes) and their dynamic properties measured by Hopkinson–Kolsky compression tests are obtained. It has been found that the decrease in the density (ρ = 2.44 – 1.19 g/cm3) and increase in the total fraction of hole area in the build plane and plane perpendicular to the build plane from 4 to 86% leads to the decrease in the dynamic mechanical properties, namely, the yield stress and ultimate tensile strength by 3 and by 4.7 times, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. E. N. Kablov, “Additive technology is the dominant national technology initiative,” Intellekt i Tekhnologii, No. 2 (11), 52–55 (2015).

    Google Scholar 

  2. I. S. Popkova, V. S. Zolotorevskii, and A. N. Solonin, “Production of products from aluminum and its alloys by selective laser melting,” Tekhnologiya Legkikh Splavov, No. 4, 14–24 (2014).

    Google Scholar 

  3. E. Louvis, P. Fox, and C. J. Sutcliffe, “Selective laser melting of aluminium components.,” J. Mater. Process. Technol. 211, 275–284 (2011).

    Article  CAS  Google Scholar 

  4. T. DebRoy, H. L. Wei, J. S. Zuback, J. W. Elmer, J. O. Milewski, A. M. Beese, A. Wilson-Heid, A. Ded, and W. Zhang, “Additive manufacturing of metallic components—Process, structure and properties,” Prog. Mater. Sci. 92, 112–224 (2018).

    Article  Google Scholar 

  5. D. K. Ryabov, V Antipov, V. A. Korolev, and P. N. Medvedev, “Influence of technological factors on the structure and properties of silumin obtained using selective laser synthesis technology,” Aviatsionnye Materialy i Tekhnologii, No. S1, 44–51 (2016).

    Google Scholar 

  6. E. O. Olakanmi, “Selective laser sintering/melting (SLS/SLM) of pure Al, Al–Mg, and Al–Si powders: effect of processing conditions and powder properties,” J. Mater. Process. Technol. 213, 1387–1405 (2013).

    Article  CAS  Google Scholar 

  7. N. Read, W. Wang, K. Essa, and M. M. Attallah, “Selective laser melting of AlSi10Mg alloy: Process optimization and mechanical properties development,” Mater. Des. 64, 417–424 (2015).

    Article  Google Scholar 

  8. J. Zhao, M. Easton, M. Qian, M. Leary, and M. Brandt, “Effect of building direction on porosity and fatigue life of selective laser melted AlSi12Mg alloy,” Mater. Sci. Eng., A 729, 76–85 (2018).

    Article  CAS  Google Scholar 

  9. I. G. Brodova, O. A. Chikova, A. N. Petrova, and A. G. Merkushev, “Structure formation and properties of eutectic silumin obtained using selective laser melting,” Phys Met. Metallogr. 120, No. 11, 1109–1114 (2019).

    Article  CAS  Google Scholar 

  10. H. Zhang, H. Zhu, T. Qi, Z. Hu, and X. Zeng, “Selective laser melting of high strength Al–Cu–Mg alloys: Processing, microstructure and mechanical properties,” Mater. Sci. Eng., A 656, 47–54 (2016).

    Article  CAS  Google Scholar 

  11. A. B. Spierings, K. Dawson, M. Voegtlin, F. Palm, and P. J. Uggowitzer, “Microstructure and mechanical properties of as-processed scandium modified aluminium using selective laser melting,” Manuf. Technol. 65, 213–216 (2016).

    Article  Google Scholar 

  12. A. B. Spierings, K. Dawson, T. Heeling, P. J. Uggowitzer, R. Schäublind, F. Palme, and K. Wegener, “Microstructural features of Sc- and Zr-modified Al–Mg alloys processed by selective laser melting,” Mater. Des. 115, 52–63 (2017).

    Article  CAS  Google Scholar 

  13. G. Savio, S. Rosso, R. Meneghello, and G. Concheri, “Geometric modeling of cellular materials for additive manufacturing in biomedical field: a review,” Appl. Bionics Biomech., No. 3, 1–14 (2018).

  14. S. V. D’yachenko, L. A. Lebedev, M. M. Sychev, and L. A. Nefedova, “Physicomechanical properties of a model material in the form of a cube with the topology of threefold periodic minimal surfaces of the gyroid type,” Tech. Phys. 63, 984–987 (2018).

    Article  Google Scholar 

  15. A. N. Petrova, I. G. Brodova, and S. V. Razorenov, E. V. Shorokhov, and T. K. Akopyan, “Mechanical properties of the Al–Zn–Mg–Fe–Ni alloy of eutectic type at different strain rates,” Phys. Met. Metallogr. 120, No. 12, 1221–1227 (2019)

    Article  CAS  Google Scholar 

  16. I. G. Shirinkina, I. G. Brodova, D. Yu. Rasposienko, R. V. Muradymov, L. A. Elshina, E. V. Shorokhov, S. V. Razorenov, and G. V. Garkushin, “The effect of graphene additives on the structure and properties of aluminum,” Phys. Met. Metallogr. 121, No. 12, 1193–1202 (2020).

    Article  CAS  Google Scholar 

  17. I. G. Brodova, P. S. Popel’, N. M. Barbin, and N. A. Vatolin, Melts as a Basis for Formation of Structure and Properties of Aluminum Alloys (UrO RAN, Yekaterinburg, 2005) [in Russian].

    Google Scholar 

  18. N. T. Aboulkhai, I. Maskery, and C. Tuck, “The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment,” Mater. Sci. Eng., A 667, 139–146 (2016).

    Article  Google Scholar 

  19. L. N. Carter, C. Martin, P. J. Withers, and M. M. Attallah, “The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy,” J. Alloy Compd. 615, 338–347 (2014).

    Article  CAS  Google Scholar 

  20. C. Galy, E. Le Guen, E. Lacoste, and C. Arvieu, “Main defects observed in aluminum alloy parts produced by SLM: From causes to consequences,” Additive Manuf. 22, 165–175 (2018).

    Article  CAS  Google Scholar 

  21. S. A. Khairallah, A. T. Anderson, A. Rubenchik, and W. E. King, “Laser powder-bed fusion additive manufacturing: Physics of complex melt flow and formation mechanisms of pores, spatter, and denudation zones,” Acta Mater. 108, 36–45 (2016).

    Article  CAS  Google Scholar 

  22. N. V. Kazantseva, I. V. Ezhov, N. I. Vinogradova, M. V. Il’inykh, A. S. Fefelov, D. I. Davydov, O. A. Oleneva, and M. S. Karabanalov, “Effect of Built geometry on the microstructure and strength characteristics of the Ti–6Al–4V alloy prepared by the selective laser melting,” Phys. Met. Metallogr. 119, No. 11, 1079–1086 (2018).

    Article  CAS  Google Scholar 

  23. N. V. Kazantseva, I. V. Ezhov, D. I. Davydov, and A. G. Merkushev, “Magnetic properties and structure of products from 1.4540 stainless steel manufactured by 3D printing,” Phys. Met. Metallogr. 120, 1270–1275 (2019).

    Article  CAS  Google Scholar 

  24. I. Maskery, N. T. Aboulkhair, A. O. Aremu, C. J. Tuck, I. A. Ashcroft, R. D. Wildman, and R. J. M. Hague, “A mechanical property evaluation of graded density Al–Si10–Mg lattice structures manufactured by selective laser melting,” Mater. Sci. Eng., A 670, 264–274 (2016).

    Article  CAS  Google Scholar 

  25. RF Patent No. 272/2728450.

  26. M. D. Abramoff, P. J. Magalhaes, and S. J. Ram, “Image Processing with Image,” J. Biophoton. Int. 11, No. 7, 36–42 (2004).

    Google Scholar 

  27. A. N. Petrova, I. G. Brodova, and S. V. Razorenov, “Features of fracture of submicrocrystalline Al–Mg–Mn alloy under shock compression,” Pish’ma Zh. Tekh. Fiz. 43, No. 10, 34–41 (2017).

    Google Scholar 

  28. V. I. Zel’dovich, I. V. Khomskaya, N. Yu. Frolova, A. E. Kheifets, D. N. Abdullina, E. A. Petukhov, E. B. Smirnov, E. V. Shorokhov, A. I. Klenov, and A. A. Pil’shchikov, “Structure and mechanical properties of austenitic stainless steel prepared by selective laser melting,” Phys. Met. Metallogr. 122, No. 5, 491–497 (2021).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank T.I. Yablonskikh and V.V. Astaf’ev for their participation in performed metallographic studies. Electron microscopic studies were carried out in the Center of Collaborative Assess “Test Center for Nanotechnologies and Advanced Materials,” Institute of Metal Physics, Ural Division, Russian Academy of Sciences.

Funding

This study was performed in terms of state assignment of the Ministry of Science and Higher Education of the Russian Federation (theme Struktura, no. АААА-А18-118020190116-6).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. G. Brodova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brodova, I.G., Klenov, A.N., Shirinkina, I.G. et al. Structure and Mechanical Properties of Al–Cu–Mg–Si Alloy Prepared by Selective Laser Melting. Phys. Metals Metallogr. 122, 1220–1227 (2021). https://doi.org/10.1134/S0031918X21120036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21120036

Keywords:

Navigation