Skip to main content
Log in

Structural Configuration and Phase Stability in Heusler Alloys Mn2YSb (Y = Os, Pt)

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The configurations of L21 and XA for Heusler alloys Mn2OsSb and Mn2PtSb were studied and the corresponding cubic phase equilibrium lattice constants were determined. The results show that the XA-type Mn2OsSb and L21-type Mn2PtSb are their cubic ground states, repectively. The calculated elastic constants and drawn three-dimensional Young’s modulus indicate these cubic phase has stable mechanical properties and elastic anisotropy. When the tetragonal deformation is considered, it is found that the tetragonal L21-type structure of Mn2PtSb can further reduce the total energy with respect to the cubic phase, while XA-type structure of Mn2OsSb is still the most stable configuration. The electronic structures show that the cubic XA configuration of Mn2OsSb of present half-metallic characteristics, and the total magnetic moment per molecular unit meets the Slater–Pauling rule.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. A. Planes, L. Manosa, X. Moya, T. Krenke, M. Acet, and E. F. Wassermann, “Magnetocaloric effect in Heusler shape-memory alloys,” J. Magn. Magn. Mater. 310, 2767–2769 (2007).

    Article  CAS  Google Scholar 

  2. Z. H. Liu, M. Zhang, Y. T. Cui, Y. Q. Zhou, W. H. Wang, G. H. Wu, X. X. Zhang, and G. Xiao, “Martensitic transformation and shape memory effect in ferromagnetic Heusler alloy Ni2FeGa,” Appl. Phys. Lett. 82, 424 (2003).

    Article  CAS  Google Scholar 

  3. R. Kainuma, K. Oikawa, W. Ito, Y. Sutou, T. Kanomata, and K. Ishida, “Metamagnetic shape memory effect in NiMn-based Heusler-type alloys,” J. Mater. Chem. 18, 1837 (2008).

    Article  CAS  Google Scholar 

  4. I. D. Rodionov, Y. S. Koshkid’ko, J. Cwik, A. Quetz, S. Pandey, A. Aryal, I. S. Dubenko, S. Stadler, N. Ali, I. S. Titov, M. Blinov, M. V. Prudnikova, V. N. Prudnikov, E. Lahderanta, A. B. Granovskii, “Magnetocaloric effect in Ni50Mn35In15 Heusler alloy in low and high magnetic fields,” JETP Lett. 101, 385(2015).

    Article  CAS  Google Scholar 

  5. C. Felser, L. Wollmann, S. Chadov, G. H. Fecher, and S. S. P. Parkin, “Basics and prospective of magnetic Heusler compounds,” APL Mater. 3, 041518 (2015).

    Article  Google Scholar 

  6. S. J. Kim, W. H. Ryu, H. S. Oh, and E. S. Park, “A large reversible room temperature magneto-caloric effect in Ni–TM–Co–Mn–Sn (TM = Ti, V, Cr) meta-magnetic Heusler alloys,”J. Appl. Phys. 123,033903 (2018).

    Article  Google Scholar 

  7. I. Babita, M. M. Raja, R. Gopalan, V. Chandrasekaran, and S. Ram, “Phase transformation and magnetic properties in Ni–Mn–Ga Heusler alloy,” J. Alloys Compd. 432, 23–29 (2007).

    Article  CAS  Google Scholar 

  8. H. Kara, M. U. Kahaly, and K. Özdoğan, “Ther- moelectric response of quaternary Heusler compound CrVNbZn,” J. Alloys Compd. 735, 950–958 (2018).

    Article  CAS  Google Scholar 

  9. B. Hamad, “Ab initio investigations of the structural, electronic, and thermoelectric properties of Fe2NbAl-based alloys,” J. Mater. Sci. 51, 10887–10896 (2016).

    Article  CAS  Google Scholar 

  10. A. Yadav, S. Kumar, M. Muruganathan, and R. Kumar, “Strain effect on topological and thermoelectric properties of half Heusler compounds XPtS (X = Sr, Ba),” J. Phys.: Condens. Matter 33, 345701 (2021).

    CAS  Google Scholar 

  11. Y. Gupta, M. M. Sinha, and S. S. Verma, “Investigations of mechanical and thermoelectric properties of AlNiP novel half-Heusler alloy,” Mater. Chem. Phys. 265, 124518 (2021).

    Article  CAS  Google Scholar 

  12. M. Hiroi, H. Sano, T. Tazoko, I. Shigeta, M. Ito, K. Koyama, H. Manaka, N. Terada, M.Fujii, A. Kondo,and K. Kindo, “Magnetic and electrical properties of Heusler compounds Ru2Cr1 – xXxSi (X = V, Ti),” J. Alloys Compd. 694, 1376–1382 (2017).

    Article  CAS  Google Scholar 

  13. J. Tobola, L. Jodin, P. Pecheur, H. Scherrer, G. Venturini, B. Malaman, and S. Kaprzyk, “Composition-induced metal-semiconductor-metal crossover in half-Heusler Fe1 – xNixTiSb,” Phys. Rev. B 64, 155103 (2001).

    Article  Google Scholar 

  14. M. Hiroi, K. Matsuda, and T. Rokkaku, “Magnetic properties and a metal-semiconductor crossover in Heusler compounds Ru2 – xFexCrSi,” Phys. Rev. B 76, 132401 (2007).

    Article  Google Scholar 

  15. Z. P. Hou, Y. Wang, E. K. Liu, W. H, Zhang, and G. H. Wu, “Large low-field positive magnetoresistance in nonmagnetic half-Heusler ScPtBi single crystal,” Appl. Phys. Lett. 107, 202103 (2015).

    Article  Google Scholar 

  16. X. L. Wang, “Proposal for a new class of materials: spin gapless semiconductors,” Phys. Rev. Lett. 100, 156404 (2008).

    Article  CAS  Google Scholar 

  17. L. Hao, P. Cheng, R. Khenata, P. Liu, X. Wang, and T. Yang, “Complete spin gapless semiconductivity in equiatomic quarternary Heusler material TiZrMnAl,” J. Magn. Magn. Mater. 508,166880 (2020).

    Article  CAS  Google Scholar 

  18. S. Ouardi, G. H. Fecher, C. Felser, and J. Kuebler, “Realization of spin gapless semiconductors: The Heusler compound Mn2CoAl,” Phys. Rev. Lett. 110, 100401 (2013).

    Article  Google Scholar 

  19. K. Ozdogan, E. Sasioglu, and I. Galanakis, “Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin-gapless and magnetic semiconductors,” J. Appl. Phys. 113, 193903 (2013).

    Article  Google Scholar 

  20. G. Z. Xu, E. K. Liu, Y. Du, G. J. Li, G. D. Liu, W. H. Wang, and G. H. Wu, “A new spin gapless semiconductors family: Quaternary Heusler compounds,” EPL 102, 17007 (2013).

    Article  Google Scholar 

  21. X. T. Wang, Z. X. Cheng, J. L. Wang, X. L.Wang, and G. D. Liu, “Recent advances in the Heusler based spin-gapless semiconductors,” J. Mater. Chem. C 4, 7176–7192 (2016).

    Article  CAS  Google Scholar 

  22. Y. Nakajima, R. Hu, K. Kirshenbaum, A. Hughes, P. Syers, X. Wang, K. Wang, R. Wang, S. R. Saha, and D. Pratt, “Topological RPdBi half-Heusler semimetals: A new family of noncentrosymmetric magnetic superconductors,” Sci. Adv. 1, e1500242 (2015).

    Article  Google Scholar 

  23. H. Y. Uzunok, E. Karaca, S. Bağcı, and H. M. Tütüncü, “Physical properties and superconductivity of Heusler compound LiGa2Rh: A first-principles calculation,” Solid State Commun. 311, 113859 (2020).

    Article  CAS  Google Scholar 

  24. P. V. S. Reddy, V. Kanchana1, G. Vaitheeswaran, and D. J. Singh, “Predicted superconductivity of Ni2VAl and pressure dependence of superconductivity in Ni2NbX (X = Al, Ga, and Sn) and Ni2VAl,” J. Phys.: Condens. Matter 28, 115703 (2016).

    Google Scholar 

  25. O. Pavlosiuk, D. Kaczorowski, X. Fabreges, A. Gukasov, and P. Wiśniewski, “Antiferromagnetism and super-conductivity in the half-Heusler semimetal HoPdBi,” Sci. Rep. 6, 18797 (2016).

    Article  CAS  Google Scholar 

  26. Y. Oner, O. Kamer, E. Alveroglu, M. Acet, and T. Krenke, “Superconductivity in the Heusler alloy Pd2YbPb,” J. Alloys Compd. 429, 64–71 (2006).

    Article  Google Scholar 

  27. S. Benatmane and S. Cherid, “Ab Initio Study of the magnetism and half-metallic properties of d 0 quaternary Heusler alloys BaNYO (Y = K, Rb, and Cs), ” JETP Lett. 111, 694 (2020).

    Article  CAS  Google Scholar 

  28. A. Zitouni, G. Remil, B. Bouadjemi, W. Benstaali, T. Lantri, M. Matougui, M. Houari, Z. Aziz, and S. Bentata, “Insight into structural, electronic, magnetic, and elastic properties of full-Heusler alloys Co2YPb (Y = Ti, V, Fe, and Mo): Ab initio study. JETP Lett,” 112, 290 (2020).

    Article  Google Scholar 

  29. H.-J. Zhou, H.-M. Huang, and S.-J. Luo, “First-principles study of the physical properties of the new quaternary Heusler alloy CoMnVZ (Z = Sn and Sb),” Phys. Solid State 63, 272–278 (2021).

    Article  CAS  Google Scholar 

  30. H. M. Huang, H. J. Zhou, G. Y. Liu, A. Laref, and L. M. Liu, “Electronic structures, magnetic properties and mechanical stability of half-metallic quaternary Heusler CoMnVTe,” Appl. Phys. A: Mater. Sci. Process. 126, 911 (2020).

    Article  CAS  Google Scholar 

  31. H. C. Kandpal, G. H. Fecher, and C. Felser, “Calculated electronic and magnetic properties of the half-metallic, transition metal based Heusler compounds,” J. Phys. D: Appl. Phys. 40, 1507 (2007).

    Article  CAS  Google Scholar 

  32. M. Saidi, M. Belhadj, A. Zaoui, S. Kacimi and A. Kadiri, “First-principles study on the ferro- magnetism of Mn-Doped LiZnAs half-Heusler compound,” Phys. Solid State 62, 2077 (2020).

    Article  CAS  Google Scholar 

  33. K. Ozdogan, E. Sasioglu, and I. Galanakis, “Slater-Pauling behavior in LiMgPdSn-type multifunctional quaternary Heusler materials: Half-metallicity, spin-gapless and magnetic semiconductors,” J. Appl. Phys.113, 193903 (2013).

    Article  Google Scholar 

  34. L. Bainsla and K. G. Suresh, “Equiatomic quaternary Heusler alloys: A material perspective for spintronic applications,” Appl. Phys. Rev. 3, 031101 (2016).

    Article  Google Scholar 

  35. N. Nazemi and F. Ahmadian, “Half-metallic characteristic in the new Full-Heusler SrYO2 (Y = Sc, Ti, V, and Cr),” Phys. Solid State 61, 1–10 (2019).

    Article  CAS  Google Scholar 

  36. K. Manna, Y. Sun, L. Muechler, J. Kubler, and C. Felser, “Heusler, Weyl and Berry,” Nat. Rev. Mater. 3, 244–256 (2018).

    Article  CAS  Google Scholar 

  37. S. A. Chambers and Y. K. Yoo, “New materials for spintronics,” MRS Bull. 28, 706–710 (2003).

    Article  CAS  Google Scholar 

  38. R. Zhang, Q. Wei, B. Wei, L. Li, M. Hu, X. Zhu, Y. Yin, and M. Zhang, “Stability and mechanical, electronic, and optical investigations of a new Heusler alloy: Ag2ScGe,” Results Phys. 27, 104518 (2021).

    Article  Google Scholar 

  39. T. Yang, L. Y. Hao, R. Khenata, and X. T.Wang, “Investigation of the structural competing and atomic ordering in Heusler compounds Fe2NiSi and Ni2FeSi under strain condition,” R. Soc. Open Sci. 6, 191007 (2019).

    Article  CAS  Google Scholar 

  40. S. O. Kart, M. Uludogan, I. Karaman, and T. Cagin, “DFT studies on structure, mechanics and phase behavior of magnetic shape memory alloys: Ni2MnGa,” Phys. Status Solidi A 205, 1026 (2008).

    Article  CAS  Google Scholar 

  41. S. V. Faleev, Y. Ferrante, J. Jeong, M. G. Samant, B. Jones, and S. S. P. Parkin, “Origin of the tetragonal ground state of Heusler compounds,” Phys. Rev. Appl. 7, 034022 (2017).

    Article  Google Scholar 

  42. G. Kresse and J. Furthmuller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  43. G. Kresse and J. Hafner, “Ab initio molecular dynamics for open-shell transition metals,” Phys. Rev. B 47, 558 (1993).

    Article  CAS  Google Scholar 

  44. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B 50, 17953 (1994).

    Article  Google Scholar 

  45. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 3865 (1996).

    Article  CAS  Google Scholar 

  46. J. Wang, J. Li, S. Yip, S. Phillpot, and D. Wolf, “Mechanical instabilities of homogeneous crystals,” Phys. Rev. B 52, 12627 (1995).

    Article  CAS  Google Scholar 

  47. S. Yip, L. Ju, M. Tang, and J. Wang, “Mechanistic aspects and atomic-level consequences of elastic instabilities in homogeneous crystals,” Mater. Sci. Eng., A 317, 236–240 (2001).

    Article  Google Scholar 

  48. F. Mouhat and F. X. Coudert, “Necessary and sufficient elastic stability conditions in various crystal systems,” Phys. Rev. B 90, 224104 (2014).

    Article  Google Scholar 

  49. Y. C. Huang, X. F. Guo, Y. L. Ma, H. B. Shao, and Z. B. Xiao, “Stabilities, electronic and elastic properties of L12–Al3 (Sc1 – xZrx) with different Zr content: A first-principles study,” Phys. B 548, 27–33 (2018).

    Article  CAS  Google Scholar 

  50. H. M. Huang, C. X. Yu, Z. Y. Jiang, S. J. Luo, and Y. J. Hu, “Effect of Strain on the Elastic, Electronic, and Magnetic Properties of Fluoro-Pervskite RbMnF3 and RbFeF3,” J. Supercond. Nov. Magn. 32, 3811–3821 (2019).

    Article  CAS  Google Scholar 

  51. R. M. Shabara and B. O. Alsobhi, “Calculations of the structural, elastic, and magnetic properties of the novel full Heusler alloys Ru2XY with X = Nb, Mn and Y = Te,Sb,” JETP Lett. 113, 322–330 (2021).

    Article  CAS  Google Scholar 

  52. M. Born and K. Huang, Dynamical Theory of Crystal Lattices (Oxford University, London, 1954).

    Google Scholar 

  53. Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, “Crystal structures and elastic properties of superhard IrN2 and IrN3 from first principles,” Phys. Rev. B 76, 054115 (2007).

    Article  Google Scholar 

  54. S. A. Dar, “Investigation of electronic, magnetic, elastic, mechanical, thermodynamic, and thermoelectronic properties of Mn2PtV Heusler alloy: ab initio study,” J. Mol. Model. 26, 35 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by Program for Science and Technology Innovation Team in Colleges of Hubei Province (no. T2021012), the Hubei Key Laboratory of Critical Materials of New Energy Vehicles (Hubei University of Automotive Technology, no. QCCLSZK2021A04), and Doctoral Scientific Research Foundation of Hubei University of Automotive Technology (No. BK201804).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. M. Huang.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Huang, H.M., Xue, S.T. et al. Structural Configuration and Phase Stability in Heusler Alloys Mn2YSb (Y = Os, Pt). Phys. Metals Metallogr. 123, 1335–1342 (2022). https://doi.org/10.1134/S0031918X21100768

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21100768

Keywords:

Navigation