Skip to main content
Log in

Investigation of Thermal and Antimicrobial Properties of NiTiX (X = Ta, Ag, and Nb) Shape Memory Alloys

  • STRUCTURE, PHASE TRANSFORMATIONS, AND DIFFUSION
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In this study, the Ni30Ti50Ta20, Ni30Ti50Ag20 and Ni29Ti50Nb21 shape memory alloys SMAs were produced through the arc-melting method under a high vacuum. The thermal properties and antimicrobial potential for these alloys were investigated. The thermal properties were determined by DSC at different heating rates. According to the DSC results, the austenite phase transformation temperature of Ni30Ti50Ta20 alloy is higher than Ni30Ti50Ag20 and Ni29Ti50Nb21 alloys. The thermal activation energy calculated by Kissinger and Ozawa methods were found as follows: Ea = 156.138 kJ/mol and Ea = 154.37 kJ/mol for Ni30Ti50Ta20 alloy, Ea = 124 kJ/mol and Ea = 123.74 kJ/mol for Ni30Ti50Ag20 alloy, and Ea = 89.43 kJ/mol and Ea = 90.6 kJ/mol for Ni29Ti50Nb21 alloy, respectively. In this study each of alloys exhibited a very strong antifungal ability. When compared by the antibacterial activities; the Ni30Ti50Ta20 alloy was showed higher activity than Ni30Ti50Ag20 and Ni29Ti50Nb21 alloys. It was seen from the Vickers hardness results of the samples that Ni30Ti50Ta20 SMA has the highest value. Optical microscope images of the alloys were taken at three different temperatures. Martesite plates were not found in any of the alloys. In addition, no structural changes were observed with the temperature difference. Based on the obtained results, it is suggested that the alloys have a high potential for biomedical applications to prevent bacterial based infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.

Similar content being viewed by others

REFERENCES

  1. F. Dagdelen, M. S. Kanca, and M. Kok, “Effects of Different quenching treatments on thermal properties and microstructure in quaternary Cu-based HTSMA,” Phys. Met. Metallogr. 120, 1378–1383 (2019).

    Article  CAS  Google Scholar 

  2. J. M. McNaney, V. Imbeni, Y. Jung, P. Papadopoulos, and R. O. Ritchie, “An experimental study of the superelastic effect in a shape-memory Nitinol alloy under biaxial loading,” Mech. Mater. 35, 969–986 (2003).

    Article  Google Scholar 

  3. J. Mohd Jani, M. Leary, A. Subic, and M. A. Gibson, “A review of shape memory alloy research, applications and opportunities,” Mater. Des. 56, 1078–1113 (2014).

    Article  CAS  Google Scholar 

  4. S. S. Mohammed, M. Kok, Z. Cirak, I. Qader., F. Dagdelen, and H. S. A. Zardawi, “The relationship between cobalt amount and oxidation parameters in NiTiCo shape memory alloys,” Phys. Met. Metallogr. 121, 1411–1417 (2020).

    Article  Google Scholar 

  5. A. Biesiekierski, J. Wang, M. A-H. Gepreel, and C. Wen, “A new look at biomedical Ti-based shape memory alloys,” Acta Biomater. 8, 1661–1669 (2012).

    Article  CAS  Google Scholar 

  6. C. L. Chu, R. M. Wang, T. Hu, L. H. Yin, Y. P. Pu, P. H. Lin, S. L. Wu, C. Y. Chung, K. W. K. Yeung, and P. K. Chu, “Surface structure and biomedical properties of chemically polished and electropolished NiTi shape memory alloys,” Mater. Sci. Eng., C 28, 1430–1434 (2008).

    Article  CAS  Google Scholar 

  7. J. B. Hemmerlein, S. O. Trerotola, M. A. Kraus, M. S. Mendonca, and L. A. Desmomd, “In vitro cytotoxicity of silver-impregnated collagen cuffs designed to decrease infection in tunneled catheters,” Radiology 204, 363–367 (1997).

    Article  CAS  Google Scholar 

  8. F. Dagdelen, E. Balci, I. N. Qader, E. Ozen, M. Kok, M. S. Kanca, S. S. Abdullah, and S. S. Mohammed, “Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys,” JOM 72, 1664–1672 (2020).

    Article  CAS  Google Scholar 

  9. E. Balci, F. Dagdelen, I. N. Qader, and M. Kok, “Effects of substituting Nb with V on thermal analysis and biocompatibility assessment of quaternary NiTiNbV SMA,” Eur. Phys. J. Plus 136, 145 (2021).

    Article  CAS  Google Scholar 

  10. M. Kök, A. O. Alo Al-Jaf, Z. Deniz Çirak, I. N. Qader, and E. Özen, “Effects of heat treatment temperatures on phase transformation, thermodynamical parameters, crystal microstructure, and electrical resistivity of NiTiV shape memory alloy,” J. Therm. Anal. Calorim. 139, 3405–3413 (2020).

    Article  Google Scholar 

  11. F. Dagdelen, and Y. Aydogdu, “Transformation behavior in NiTi–20Ta and NiTi–20Nb SMAs,” J. Therm. Anal. Calorim. 136, 637–642 (2019).

    Article  CAS  Google Scholar 

  12. B. L. Wang, L. Li, and Y. F. Zheng, “In vitro cytotoxicity and hemocompatibility studies of Ti–Nb, Ti–Nb–Zr and Ti–Nb–Hf biomedical shape memory alloys,” Biomed. Mater. 5, 044102 (2010).

    Article  CAS  Google Scholar 

  13. H. F. Li, K. J. Qiu, F. Y. Zhou, L. Li, and Y. F. Zheng, “Design and development of novel antibacterial Ti–Ni–Cu shape memory alloys for biomedical application,” Sci. Rep. 6, 37475 (2016).

    Article  CAS  Google Scholar 

  14. Y. F. Zheng, B. B. Zhang, B. L. Wang, Y. B. Wang, L. Li, Q. B. Yang, and L. S. Cui, “Introduction of antibacterial function into biomedical TiNi shape memory alloy by the addition of element Ag,” Acta Biomater. 7, 2758–2767 (2011).

    Article  CAS  Google Scholar 

  15. I. N. Qader, E. Öner, M. Kok, S. S. Mohammed, F. Dağdelen, M. S. Kanca, and Y. Aydoğd, “Mechanical and thermal behavior of Cu84−xAl13Ni3Hfx shape memory alloys,” Iran. J. Sci.Technol., Trans. A: Sci. 45, 343–349 (2020).

    Article  Google Scholar 

  16. I. N. Qader, E. Ercan, B. A. M. Faraj, M. Kok, F. Dagdelen, and Y. Aydogdu, “The Influence of time-dependent aging process on the thermodynamic parameters and microstructures of quaternary Cu79–Al12–Ni4–Nb5 (wt %) shape memory alloy,” Iran. J. Sci.Technol., Trans. A: Sci. 44, 903–910 (2020).

    Article  Google Scholar 

  17. E. Acar, M. Kok, and I. N. Qader, “Exploring surface oxidation behavior of NiTi–V alloys,” Eur. Phys. J. Plus 135, 58 (2020).

    Article  CAS  Google Scholar 

  18. E. Ercan, F. Dagdelen, and I. N. Qader, “Effect of tantalum contents on transformation temperatures, thermal behaviors and microstructure of CuAlTa HTSMAs,” J. Therm. Anal. Calorim. 139, 29–36 (2020).

    Article  CAS  Google Scholar 

  19. M. Kök, Z. D. Yakinci, A. Aydogdu, and Y. Aydogdu, “Thermal and magnetic properties of Ni51Mn28.5Ga19.5B magnetic-shape-memory alloy,” J. Therm. Anal. Calorim. 115, 555–559 (2014).

    Article  Google Scholar 

  20. M. Kök and Y. Aydoğdu, “Effect of composition on the thermal behavior of NiMnGa alloys,” J. Therm. Anal. Calorim. 113, 859–863 (2013).

    Article  Google Scholar 

  21. L. V. Spivak and N. E. Shchepina, “Calorimetric effects in the structural and phase transitions of metals and alloys,” Phys. Met. Metallogr. 121, 968–995 (2020).

    Article  CAS  Google Scholar 

  22. H. E. Kissinger, “Reaction kinetics in differential thermal analysis,” Anal. Chem. 29, 1702–1706 (1957).

    Article  CAS  Google Scholar 

  23. T. Ozawa, “Kinetic analysis of derivative curves in thermal analysis,” J. Therm. Anal. 2, 301–324 (1970).

    Article  CAS  Google Scholar 

  24. M. H. Elahinia, Shape Memory Alloy Actuators: Design, Fabrication, and Experimental Evaluation (Wiley, New York, 2016).

    Google Scholar 

  25. N. Lohan, B. Pricop, M. Popa, E. Matcovschi, N. Cimpoeşu, R. Cimpoeşu, B. Istrate, and L. G. Bujoreanu, “Hot rolling effects on the microstructure and chemical properties of NiTiTa alloys,” J. Mater. Eng. Perform. 28, 7273–7280 (2019).

    Article  CAS  Google Scholar 

  26. C. Gong, Y. Wang, and D. Yang, “Phase transformation and second phases in ternary Ni–Ti–Ta shape memory alloys,” Mater. Chem. Phys. 96, 183–187 (2006).

    Article  CAS  Google Scholar 

  27. F. Dagdelen, E. Balci, I. N. Qader, E. Ozen, M. Kok, M. S. Kanca, S. S. Abdullah, and S. S. Mohammed, “Influence of the Nb content on the microstructure and phase transformation properties of NiTiNb shape memory alloys,” JOM 72, 1664–1672 (2020).

    Article  CAS  Google Scholar 

  28. Q. Fan, M. Y. Sun, Y. H. Zhang, Y. Y. Wang, Y. Zhang, H. B. Peng, K. H. Sun, X. H. Fan, S. K. Huang, and Y. H. Wen, “Influence of precipitation on phase transformation and mechanical properties of Ni-rich NiTiNb alloys,” Mater. Charact. 154, 148–160 (2019).

    Article  CAS  Google Scholar 

  29. S. Liu, W. Liu, J. Liu, J. Liu, L. Zhang, Y. Tang, L‑C. Zhang, and L. Wang, “Compressive properties and microstructure evolution in NiTiNb alloy with mesh eutectic phase,” Mater. Sci. Eng., A 801, 140434 (2021).

    Article  CAS  Google Scholar 

  30. H. Cao, Silver Nanoparticles for Antibacterial Devices: Biocompatibility and Toxicity (CRC Press, 2017)

    Book  Google Scholar 

  31. S. A. Fadlallah, N. El-Bagoury, S. M. F. Gad El-Rab, R. A. Ahmed, and G. El-Ousamii, “An overview of NiTi shape memory alloy: corrosion resistance and antibacterial inhibition for dental application,” J. Alloys Compd. 583, 455–464 (2014).

    Article  CAS  Google Scholar 

Download references

Funding

This work is supported by TÜBİTAK under Project no. 119M300 and Projects of Scientific Investigation (BAP) Unit of Gazi University under project no. 05/2019-07.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yildirim Aydogdu or Fethi Dagdelen.

Ethics declarations

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yildirim Aydogdu, Abboosh, O., Soyer, P. et al. Investigation of Thermal and Antimicrobial Properties of NiTiX (X = Ta, Ag, and Nb) Shape Memory Alloys. Phys. Metals Metallogr. 123, 1326–1334 (2022). https://doi.org/10.1134/S0031918X21100306

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21100306

Keywords:

Navigation