Skip to main content
Log in

Effect of Thermodeformation Treatment on the Structure and Mechanical Properties of the Al3Ca1Cu1.5Mn Alloy

  • STRENGTH AND PLASTICITY
  • Published:
Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

The processability of the Al3Ca1Cu1.5Mn alloy in the course of thermodeformation treatment has been studied. Its structure has been analyzed in cast and deformed states. The cast structure is composed of primary Al crystals and ultrafine eutectic colonies formed by (Al) and submicron Al4Ca intermetallide particles with revealed solubility of copper and manganese in both structural components. An essential reduction in size to 300–500 nm has been revealed in the process of deformation for eutectic intermetallides which are uniformly distributed over the composite material volume. Rolled sheets demonstrate a high stability of their properties in the course of thermal treatment at 250 and 350°C. In particular, it has been found that the annealing of a hot-rolled sheet of 0.5 mm in thickness at 250°C for 12 h decreases the alloy microhardness by only ~5%. The most advantageous regimes of the production of rolled sheets provide the balanced mechanical properties, when the ultimate strength is 220–230 MPa, and the ultimate yield strength is 190–200 MPa at a relatively high elongation of 9%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. N. A. Belov, E. A. Naumova, and D. G. Eskin, “Casting alloys of the Al–Ce–Ni system: microstructural approach to alloy design,” Mater. Sci. Eng., A 271, 134–142 (1999).

    Article  Google Scholar 

  2. T. K. Akopyan, N. A. Belov, E. A. Naumova, and N. V. Letyagin, “New in-situ Al matrix composites based on Al–Ni–La eutectic,” Mater. Lett. 245, 110–113 (2019).

    Article  CAS  Google Scholar 

  3. A. V. Pozdnyakov, R. Yu. Barkov, Zh. Sarsenbaev, S. M. Amer, and A. S. Prosviryakov, “Evolution of microstructure and mechanical properties of a new Al–Cu–Er wrought alloy,” Phys. Met. Metallogr. 120, 614–619 (2019).

    Article  CAS  Google Scholar 

  4. L. Zhang, P. J. Masset, F. Cao, F. Meng, L. Liu, and Z. Jin, “Phase relationships in the Al-rich region of the Al–Cu–Er system,” J. Alloys Compd. 509, 3822–3831 (2011).

    Article  CAS  Google Scholar 

  5. L. G. Zhang, L. B. Liu, G. X. Huang, H. Y. Qi, B. R. Jia, and Z. P. Jin, “Thermodynamic assessment of the Al–Cu–Er system,” CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 32, 527–534 (2008).

    Article  CAS  Google Scholar 

  6. N. A. Belov, A. V. Khvan, and A. N. Alabin, “Microstructure and phase composition of Al–Ce–Cu alloys in the Al-rich corner,” Mater. Sci. Forum 519–521, 395–400 (2006).

    Article  Google Scholar 

  7. N. A. Belov and A. V. Khvan, “The ternary Al–Ce–Cu phase diagram in the aluminum-rich corner,” Acta Mater. 55, 5473–5482 (2007).

    Article  CAS  Google Scholar 

  8. D. R. Manca, A. Yu. Churyumov, A. V. Pozdniakov, A. S. Prosviryakov, D. K. Ryabov, A. Yu. Krokhin, V. A. Korolev, and D. K. Daubarayte, “Microstructure and properties of novel heat resistant Al–Ce–Cu alloy for additive manufacturing,” Met. Mater. Int. 25, 633–640 (2019).

    Article  CAS  Google Scholar 

  9. Y. Liu, Z. Bian, Z. Chen, M. Wang, D. Chen, and H. Wang, “Effect of Mn on the elevated temperature mechanical properties of Al–La alloys,” Mater. Charact. 155, 109821 (2019).

    Article  CAS  Google Scholar 

  10. Y. Yang, S. Bahl, K. Sisco, M. Lance, D. Shin, A. Shyam, A. Plotkowski, and R. R. Dehoff, “Primary solidification of ternary compounds in Al-rich Al–Ce–Mn alloys,” J. Alloys Compd. 844, 156048 (2020).

    Article  CAS  Google Scholar 

  11. Y. Jiang, X. Shi, X. Bao, Y. He, S. Huang, D. Wu, W. Bai, L. Liu and L. Zhang, “Experimental investigation and thermodynamic assessment of Al–Ca–Ni ternary system,” J. Mater. Sci. 52, 12409–12426 (2017).

    Article  CAS  Google Scholar 

  12. N. A. Belov, T. K. Akopyan, S. S. Mishurov, and N. O. Korotkova, “Effect of Fe and Si on the microstructure and phase composition of the aluminum-calcium eutectic alloys,” Non-ferrous Met., No. 2, 37–42 (2017).

  13. N. A. Belov, E. A. Naumova, T. K. Akopyan, and V. V. Doroshenko, “Phase diagram of the Al–Ca–Fe–Si system and its application for the design of aluminum matrix composites,” JOM 70, 2710–2715 (2018).

    Article  CAS  Google Scholar 

  14. N. V. Letyagin, A. F. Musin, and L. S. Sichev, “New aluminum-calcium casting alloys based on secondary raw materials,” Mater. Today 38, 1551–1555 (2021).

    CAS  Google Scholar 

  15. T. K. Akopyan, N. V. Letyagin, N. A. Belov, A. N. Koshmin, and D. Sh. Gizatulin, “Analysis of the microstructure and mechanical properties of a new wrought alloy based on the ((Al) + Al4(Ca,La)) eutectic,” Phys. Met. Metallogr. 121, 914–919 (2020).

    Article  CAS  Google Scholar 

  16. T. K. Akopyan, N. V. Letyagin, and N. N. Avxentieva, “High-tech alloys based on Al–Ca–La(–Mn) eutectic system for casting, metal forming and selective laser melting,” Non-ferrous Met., No. 1, 52–59 (2020).

  17. P. K. Shurkin, N. V. Letyagin, A. I. Yakushkova, M. E. Samoshina, D. Yu. Ozherelkov, and T. K. Akopyan, “Remarkable thermal stability of the Al–Ca–Ni–Mn alloy manufactured by laser-powder bed fusion,” Mater. Lett. 285, 129074 (2021).

    Article  CAS  Google Scholar 

  18. N. A. Belov, N. O. Korotkova, T. K. Akopyan, and A. M. Pesin, “Phase composition and mechanical properties of Al–1.5% Cu–1.5% Mn–0.35% Zr (Fe,Si) wire alloy,” JOM 782, 735–746 (2019).

    CAS  Google Scholar 

  19. N. A. Belov, E. A. Naumova, T. K. Akopyan, and V. V. Doroshenko, “Design of multicomponent aluminium alloy containing 2 wt % Ca and 0.1 wt % Sc for cast products,” JOM 762, 528–536 (2018).

    CAS  Google Scholar 

  20. C. Cao, D. Chen, X. Fang, J. Ren, J. Shen, L. Meng, J. Liu, L. Qiu, and Y. Fang, “Effects of Cu addition on the microstructure and properties of the Al–Mn–Fe–Si alloy,” J. Alloys Compd. 834, 155175 (2020).

    Article  CAS  Google Scholar 

  21. S. Thangaraju, M. Heilmaier, B. S. Murty, and S. S. Vadlamani, “On the estimation of true Hall–Petch constants and their role on the superposition law exponent in al alloys,” Adv. Eng. Mater. 14, 892–897 (2012).

    Article  CAS  Google Scholar 

  22. E. Cinkilic, X. Yan, and A. A. Luo, “Modeling precipitation hardening and yield strength in cast Al–Si–Mg–Mn alloys,” Metals 10, 1356 (2020).

    Article  CAS  Google Scholar 

Download references

Funding

This study was supported by the Russian Foundation for Basic Research, project no. 19-33-90031.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. V. Letyagin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Letyagin, N.V., Shurkin, P.K., Nguen, Z. et al. Effect of Thermodeformation Treatment on the Structure and Mechanical Properties of the Al3Ca1Cu1.5Mn Alloy. Phys. Metals Metallogr. 122, 814–819 (2021). https://doi.org/10.1134/S0031918X21080093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X21080093

Keywords:

Navigation