Skip to main content
Log in

Dynamic theory of possible morphological characteristics of austenite nanocrystals formed upon the α–ε–γ transformation in Fe–Ni alloys via deformation and shuffling of {110}α planes

  • Theory of Metals
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

In dynamic theory, one of the possible variants of the formation of martensite crystals upon the reverse α–γ transformation in Fe–Ni alloys connected with the participation of the intermediate e phase is discussed. The mechanism of planar tension–compression deformation of {110}α planes is considered. A set of characteristic morphological features for crystals of the γ phase has been found, which indicates the participation of the ε phase in their formation and includes the material orientation relationships close to the ideal Kurdjumov–Sachs orientation relationships.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. V. Kurdyumov, L. M. Utevskii, and R. I. Entin, Transformations in Iron and Steel (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  2. V. M. Schastlivtsev, Yu. V. Kaletina, and E. A. Fokina, Martensitic Transformation in a Magnetic Field (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2007) [In Russian].

    Google Scholar 

  3. T. Maki and C. M. Wayman, “Tansformation twin width variation in Fe–Ni and Fe–Ni–C martensites,” Proc. 1st JIM Int. Symp. on New Aspects of Martensitic Transformation, 1976,” Suppl. Trans. JIM 17, 69–74 (1976).

    Google Scholar 

  4. M. P. Kashchenko and V. G. Chashchina, “Key role of transformation twins in comparison of results of crystal geometric and dynamic analysis for thin-plate martensite,” Phys. Met. Metallogr. 114, 821–825 (2013).

    Article  Google Scholar 

  5. V. V. Sagaradze, “Structural forms of γ phase in alloys with reverse martensitic transformation,” in Martensitic Transformations ICOMAT 1977 (Naukova Dumka, Kiev, 1978), pp. 257–260 [in Russian].

    Google Scholar 

  6. V. V. Sagaradze and A. N. Uvarov, Strengthening of Austenitic Steels (Nauka, Moscow, 1989) [in Russian].

    Google Scholar 

  7. I. G. Kabanova, V. V. Sagaradze, N. V. Kataeva, and V. E. Danil’chenko, “Detection of the e phase and the Headley–Brooks orientation relationships upon α–γ transformation in the Fe–32% Ni alloy,” Phys. Met. Metallogr. 112, 381–388 (2011).

    Article  Google Scholar 

  8. V. V. Sagaradze, N. V. Kataeva, I. G. Kabanova, V. A. Zavalishin, A. I. Valiullin, and M. F. Klyukina, “Structural mechanism of reverse α → γ transformation and strengthening of Fe–Ni alloys,” Phys. Met. Metallogr. 115, 661–671 (2014).

    Article  Google Scholar 

  9. B. I. Nikolin, Multilayered Structures and Polytypism in Metallic Alloys (Naukova Dumka, Kiev, 1984) [in Russian].

    Google Scholar 

  10. M. P. Kashchenko and V. G. Chashchina, “Dynamic model of supersonic martensitic crystal growth,” Phys.–Usp. 54, 331–349 (2011).

    Article  Google Scholar 

  11. M. P. Kashchenko and V. G. Chashchina, “Formation of martensite crystals in the limiting case of supersonic rate of growth,” Pis’ma Mater. 1, 7–15 (2011).

    Google Scholar 

  12. M. P. Kashchenko and V. G. Chashchina, “Fundamental achievements of the dynamic theory of reconstructive martensitic transformations,” Mater. Sci. Forum 738–739, 3–9 (2013).

    Article  Google Scholar 

  13. M. P. Kashchenko, Wave Model of Martensite Growth at γ–α Transformation in Iron-Based Alloys (Izhevsk. Inst. Komp. Issled., Izhevsk, 2010) [in Russian].

    Google Scholar 

  14. M. P. Kashchenko and V. G. Chashchina, Dynamic Model of Twinned Martensite Crystal Formation at γ–α Transformation in Iron Alloys (UGLTU, Ekaterinburg, 2009) [in Russian].

    Google Scholar 

  15. M. P. Kashchenko and V. G. Chashchina, “Crystal dynamics of the bcc–hcp martensitic transformation: I. Controlling wave process,” Phys. Met. Metallogr. 105, 537–543 (2008).

    Article  Google Scholar 

  16. M. P. Kashchenko and V. G. Chashchina, “Crystal dynamics of the bcc–hcp martensitic transformation: II. Morphology,” Phys. Met. Metallogr. 106, 14–23 (2008).

    Article  Google Scholar 

  17. V. M. Schastlivtsev and D. A. Rodionov, Steel Single Crystals (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 1996) [in Russian].

    Google Scholar 

  18. M. P. Kashchenko, V. V. Letuchev, S. V. Konovalov, and T. N. Yablonskaya, “Model of packet martensite formation,” Phys. Met. Metallogr. 83, 237–242 (1997).

    Google Scholar 

  19. M. P. Kashchenko and V. G. Chashchina, “Mechanism of the fcc–bcc martensitic transformation with the fastest transformation of close-packed planes. I. The lattice parameter ratio and habit planes,” Russ. Phys. J. 51, 659–665 (2008).

    Article  Google Scholar 

  20. M. P. Kashchenko and V. G. Chashchina, “Mechanism of the fcc–bcc martensitic transformation with the fastest rearrangement of close-packed planes. II. Orientational relationships,” Russ. Phys. J. 51, 1161–1167 (2008).

    Article  Google Scholar 

  21. V. G. Chashchina, “A modified dynamic model of an fcc–hcp martensitic transformation without macroshear,” Russ. Phys. J. 52, 763–765 (2009).

    Article  Google Scholar 

  22. M. P. Kashchenko and V. P. Vereshchagin, “Nucleation centers and wave schemes of martensite growth in iron alloys,” Sov. Phys. J. 32, 592–595 (1989).

    Article  Google Scholar 

  23. L. A. Takhtadzhan and L. D. Faddeev, Hamilton’s Approach in Soliton Theory (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  24. M. P. Kashchenko, K. N. Dzhemilev, and V. G. Chashchina, “Crystal dynamics of forming e martensite with {8 9 12}α] habit planes in titanium,” Russ. Phys. J. 55, 1235–1237 (2012).

    Article  Google Scholar 

  25. M. P. Kashchenko, K. N. Dzhemilev, and V. G. Chashchina, “Crystal dynamics of forming ε martensite with {334}α habit planes in titanium,” Russ. Phys. J. 55, 1052–1055 (2012).

    Article  Google Scholar 

  26. M. P. Kashchenko, V. P. Vereshchagin, and N. V. Aristova, “Dislocation nucleation centers in the reverse α–γ martensitic transformation in iron alloys,” Phys. Met. Metallogr. 75 (2), 135–138 (1993).

    Google Scholar 

  27. M. P. Kashchenko, I. F. Latypov, A. V. Nefedov, A. G. Semenovykh, and V. G. Chashchina, “Interpretation of the morphological transition from {557} to {225} habit during fcc–bcc martensitic transformation from the dynamic-theory positions,” Fundam. Probl. Sovrem. Materialoved. 11, 110–113 (2014).

    Google Scholar 

  28. T. J. Headley and J. A. Brooks, “A new bcc–fcc orientation relationship observed between ferrite and austenite in solidification structures of steels,” Metall. Mater. Trans. A 33, 5–15 (2002).

    Article  Google Scholar 

  29. M. P. Kashchenko and V. G. Chashchina, “Estimation of the effective growth rate of a plate of bainitic ferrite in dynamic theory,” Phys. Met. Metallogr. 114, 266–271 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. P. Kashchenko.

Additional information

Original Russian Text © M.P. Kashchenko, V.G. Chashchina, 2015, published in Fizika Metallov i Metallovedenie, 2015, Vol. 116, No. 9, pp. 899–907.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kashchenko, M.P., Chashchina, V.G. Dynamic theory of possible morphological characteristics of austenite nanocrystals formed upon the α–ε–γ transformation in Fe–Ni alloys via deformation and shuffling of {110}α planes. Phys. Metals Metallogr. 116, 851–858 (2015). https://doi.org/10.1134/S0031918X15090094

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X15090094

Keywords

Navigation