Skip to main content
Log in

High-sensitive hysteresisless spin valve with a composite free layer

  • Electrical and Magnetic Properties
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Method of dc magnetron deposition has been used to prepare metallic nanostructures of the (Si, Al2O3, glass)/Ta/[NiFe/CoFe]/Cu/CoFe/(FeMn, MnIr)/Ta spin-valve type with a composite “free layer” Ni80Fe20/Co90Fe10. A three-stage method of decreasing hysteresis of the free layer has been suggested. The dependence of the magnitude of the giant magnetoresistance and hysteresis has been investigated depending on the angle between the direction of the easy magnetization axis of the free layer and the direction of the applied magnetic field in the plane of layers. It is shown that in the spin valves studied the hysteresis can be reduced to a few tenths of an oersted at the magnitude of the magnetoresistance more than 8%. In the case of a spin valve with an antiferromagnet Fe50Mn50 the magnetoresistive sensitivity in the range of the hysteresisless variation of the magnetoresistance was equal to 1%/Oe, whereas the maximum sensitivity in the presence of a hysteresis exceeded 6%/Oe. A greater sensitivity (2.5%/Oe) at the magnitude of the free-layer hysteresis of 0.6 Oe was obtained for spin valves on the basis of the antiferromagnetic Mn75Ir25 alloy. For them, the maximum magnetoresistance was equal to 11.6%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. Dieny, V. S. Speriosu, S. S. P. Parkin, B. A. Gurney, D. R. Wilhoit, and D. Mauri, “Giant Magnetoresistive in Soft Ferromagnetic Multilayers,” Phys. Rev. B: Condens. Matter 43, 1297–1300 (1991).

    Article  CAS  Google Scholar 

  2. B. Dieny, V. S. Speriosu, S. Metin, S. S. P. Parkin, B. A. Gurney, and D. R. Wilhoit, “Magnetotransport Properties of Magnetically Soft Spin-Valve Structures,” J. Appl. Phys. 69, 4774–4779 (1991).

    Article  CAS  Google Scholar 

  3. K. H. J. Buschow, Handbook of Magnetic Materials, Vol. 15 (Elsevier, Amsterdam, 2003).

    Google Scholar 

  4. R. Coehoorn, Novel Magnetoelectronic Materials and Devices. Lecture Notes 2003. Exchange-Biased SpinValves/http://web.phys.tue.nl/nl/de-faculteit/capaciteitsgroepen/functionele-materialen/physics-of-nano-structures/students-education/lectures-courses/

  5. K. Shimazawa, Y. Tsuchiya, K. Inage, Y. Sawada, K. Tanaka, N. Takahashi, Y. Antoku, H. Kiyono, K. Terunuma, and A. Kobayashi, “Enhanced GMR Ratio of Dual Spin Valve with Monolayer Pinned Structure,” IEEE Trans. Magn. 42(2), 120–125 (2006).

    Article  Google Scholar 

  6. H. Sakakima, Y. Sugita, M. Satomi, and Y. Kawawake, “Large MR Ratios in Spin Valves Bounded with Insulating Antiferromagnets,” J. Magn. Magn. Mater. 198–199, 9–11 (1999).

    Article  Google Scholar 

  7. W. F. Egelhoff, Jr., P. J. Chen, C. J. Powell, M. D. Stiles, R. D. McMichael, C. -L. Linand, J. M. Sivertsen, J. H. Judy, K. Takano, A. E. Berkowitz, T. C. Anthony, and J. A. Brug, “Optimizing the Giant Magnetoresistance of Symmetric and Bottom Spin Valves,” J. Appl. Phys. 79, 5277–5281 (1996).

    Article  CAS  Google Scholar 

  8. W. F. Egelhoff, P. J. Chen, C. J. Powell, M. D. Stiles, R. D. McMichael, C.-L. Lin, J. M. Sivertsen, J. H. Judy, K. Takano, and A. E. Berkowitz, “The Trade-off between Large Magnetoresistance and Small Coercivity in Symmetric Spin Valves,” J. Appl. Phys. 79, 8603–8606 (1996).

    Article  CAS  Google Scholar 

  9. Y. M. Lee, J. Hayakawa, S. Ikeda, F. Matsukura, and H. Ohno, “Effect of Electrode Composition on the Tunnel Magnetoresistance of Pseudo-Spin-Valve Magnetic Tunnel Junction with a MgO Tunnel Barrier,” Appl. Phys. Lett. 90, 212507 (2007).

    Article  Google Scholar 

  10. S. Ikeda, J. Hayakawa, Y. Ashizawa, Y. M. Lee, K. Miura, H. Hasegawa, M. Tsunoda, F. Matsukura, and H. Ohno, “Tunnel Magnetoresistance of 604% at 300 K by Suppression of òà Diffusion in CoFeB/MgO/CoFeB Pseudo-Spin-Valves Annealed at High Temperature,” Appl. Phys. Lett. 93, 082508 (2008).

    Article  Google Scholar 

  11. L. Jiang, H. Naganuma, M. Oogane, and Y. Ando, “Large Tunnel Magnetoresistance of 1056% at Room Temperature in MgO Based Double Barrier Magnetic Tunnel Junction,” Appl. Phys. Express 2, 083002 (2009).

    Article  Google Scholar 

  12. Th. G. S. M. Rijks, W. J. M. de Jonge, W. Folkerts, J. C. S. Kools, and R. Coehoorn, “Magnetoresistance in Ni80Fe20/Cu/Ni80Fe20/Fe50Mn50 Spin Valves with Low Coercivity and Ultrahigh Sensitivity,” Appl. Phys. Lett. 65, 916–918 (1994).

    Article  CAS  Google Scholar 

  13. J. C. S. Kools, “Exchange-Biased Spin-Valves for Magnetic Storage,” IEEE Trans. Magn. 32, 3165–3184 (1996).

    Article  CAS  Google Scholar 

  14. M. Labrune, J. C. S. Kools, and A. Thiaville, “Magnetization Rotation in Spin-Valve Multilayers,” J. Magn. Magn. Mater. 171, 1–15 (1997).

    Article  CAS  Google Scholar 

  15. J. P. King, J. N. Chapman, J. C. S. Kools, and M. F. Gillies, “On the Free Layer Reversal Mechanism of FeMn-Biased Spin-Valves with Parallel Anisotropy,” J. Phys. D: Appl. Phys. 32, 1087–1096 (1999).

    Article  CAS  Google Scholar 

  16. J. McCord, R. Schäfer, R. Mattheis, and K.-U. Barholz, “Kerr Observations of Asymmetric Magnetization Reversal Processes in CoFe/IrMn Bilayer Systems,” J. Appl. Phys. 93, 5491–5497 (2003).

    Article  CAS  Google Scholar 

  17. H. Kanai, K. Yamada, K. Aoshima, Y. Ohtsuka, J. Kane, M. Kanamine, J. Toda, and Y. Mizoshita, “Spin-Valve Read Heads with NiFe/Co90Fe10 Layers for 5 Gbit/in2 Density Recording,” IEEE Trans. Magn. 32, 3368–3373 (1996).

    Article  Google Scholar 

  18. M. A. Milyaev, L. I. Naumova, V. V. Proglyado, T. P. Krinitsina, A. M. Burkhanov, N. S. Bannikova, and V. V. Ustinov, “Giant Changes in Magnetic and Magnetoresistive Properties of CoFe/Cu Multilayers at Subnanosized Variations in the Thickness of the Chromium Buffer Layer,” Phys. Met. Metallogr. 112, 138–145 (2011).

    Article  Google Scholar 

  19. H. N. Fuke and M. Sahashi, “Influence of Crystal Structure and Oxygen Content on Exchange-Coupling Properties of IrMn/CoFe Spin-Valve Films,” Appl. Phys. Lett. 75, 3680–3682 (1999).

    Article  CAS  Google Scholar 

  20. B. Dieny, R. C. Sousa, J. Hérault, C. Papusoi, G. Prenat, U. Ebels, D. Houssameddine, S. Auffret, L. D. Buda-Prejbeanu, M. C. Cyrille, O. Redon, C. Ducruet, J. Nozires, and I. L. Prejbeanu, “Spin-Transfer Effect and Its Use in Spintronic Components,” Int. J. Nanotechn. 7, 591–614 (2010).

    Article  CAS  Google Scholar 

  21. P. P. Freitas, R. Ferreira, S. Cardoso, and F. Cardoso, “Magnetoresistive Sensors,” J. Phys.: Condens. Matter 19, 165221 (2007).

    Article  Google Scholar 

  22. N. V. Bagrets, E. A. Kravtsov, M. A. Milyaev, L. N. Romashev, A. V. Semerikov, and V. V. Ustinov, “Influence of the Growth Temperature on the Structure of Interlayer Boundaries of Fe/Cr Superlattices,” Phys. Met. Metallogr. 96, 80–85 (2003).

    Google Scholar 

  23. S. H. Liao, “Quantitative Interpretation of the Magnetoresistive Response (Amplitude and Shape) of Spin Valves with Synthetic Antiferromagnetic Pinned Layers,” J. Appl. Phys. 87, 3415–3420 (2000).

    Article  Google Scholar 

  24. Y. Kamiguchi, K. Saito, H. Iwasaki, M. Sahashi, M. Ouse, and S. Nakamura, “Giant Magnetoresistance and Soft Magnetic Properties of Co90Fe10/Cu Spin-Valve Structures,” J. Appl. Phys. 79, 6399–6401 (1996).

    Article  CAS  Google Scholar 

  25. H. Li, P. P. Freitas, Z. Wang, J. B. Sousa, P. Gogol, and J. Chapman, “Exchange Enhancement and Thermal Anneal in Mn76Ir24 Bottom-Pinned Spin Valves,” J. Appl. Phys. 89, 6904–6906 (2001).

    Article  CAS  Google Scholar 

  26. R. M. Öksüzoğlu, M. Yildirim, H. Cinar, E. Hildebrandt, and L. Alff, “Effect of Ta Buffer and NiFe Seed Layers on Pulsed-DC Magnetron Sputtered Ir20Mn80/Co90Fe10 Exchange Bias,” J. Magn. Magn. Mater. 323, 1827–1834 (2011).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © V.V. Ustinov, M.A. Milyaev, L.I. Naumova, V.V. Proglyado, N.S. Bannikova, T.P. Krinitsina, 2012, published in Fizika Metallov i Metallovedenie, 2012, Vol. 113, No. 4, pp. 363–371.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ustinov, V.V., Milyaev, M.A., Naumova, L.I. et al. High-sensitive hysteresisless spin valve with a composite free layer. Phys. Metals Metallogr. 113, 341–348 (2012). https://doi.org/10.1134/S0031918X12040151

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X12040151

Keywords

Navigation