Skip to main content
Log in

Mechanisms of plastic deformation in microcrystalline and nanocrystalline TiNi-based alloys

  • Strength and Plasticity
  • Published:
The Physics of Metals and Metallography Aims and scope Submit manuscript

Abstract

Mechanisms of plastic deformation of a high-temperature B2 phase that act upon tension, compression, and high-pressure torsion in TiNi-based single crystals have been studied depending on the crystal orientation. For the crystals with orientations located near the [\( \bar 1 \)11] and [\( \bar 1 \)12] poles in the standard stereographic triangle, multiple dislocation slip prevails upon both compression and tension. In “hard” crystals with the deformation axis close to the [001] direction, in which the Schmid factors for dislocation slip are close to zero, the main deformation mechanisms are the mechanical twinning in the B2 phase and the stress-assisted B2 → B19′ martensitic transformation. All the above listed mechanisms take part in the formation of the {111}〈hkl〉 texture. The mechanism of the change in the orientation of “hard” polycrystalline grains upon the formation of a nanocrystalline and amorphous-crystalline state has been demonstrated on the example of the evolution of the structure of [001] crystals upon severe plastic deformation in a Bridgman cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. A. Monasevich, Yu. I. Paskal’, V. E. Prib, et al., “Effect of Texture on the Shape Memory Effect in Titanium Nickelide,” Metalloved. Term. Obrab. Met., (9), 62–63 (1979) [Met. Sci. Heat Treat. (21), 735–737 (1979)].

  2. Y. C. Shu and K. Bhattacharya, “The Influence of Texture on the Shape-Memory Effect in Polycrystals,” Acta Mater. 46(15), 5457–5473 (1998).

    Article  CAS  Google Scholar 

  3. S. Gao and S. Yi, “Experimental Study on the Anisotropic Behavior of Textured NiTi Pseudoelastic Shape Memory Alloys,” J. Phys. IV France 112, 827–830 (2003).

    Article  CAS  Google Scholar 

  4. S. C. Mao, X. D. Han, J. F. Luo, and Z. Zhang, “Microstructure and Texture Evolution of Ultra-Thin TiNi Hot-Rolled Sheets Studied by Automated EBSD,” Mater. Lett. 59, 3567–3571 (2005).

    Article  CAS  Google Scholar 

  5. T. Saburi and S. Nenno, “The Shape Memory Effect and Related Phenomena,” in Proc. Int. Conf. Solid-Solid Phase Transform. (Pittsburgh, 1981), pp. 1455–1479.

  6. H. Sehitoglu, R. Hamilton, D. Canadinc, et al., “Detwinning in TiNi Alloys,” Metall. Mater. Trans. A 34, 5–13 (2003).

    Article  Google Scholar 

  7. Yu. I. Chumlyakov, N. S. Surikova, and A. D. Korotaev, “Orientation Dependence of Strength and Plasticity of Titanium Nickelide Single Crystals,” Fiz. Met. Metalloved. 82(1), 148–158 (1996) [Phys. Met. Metallogr. 82 (1), 102–109 (1996)].

    CAS  Google Scholar 

  8. N. S. Surikova and Yu. I. Chumlyakov, “Mechanisms of Plastic Deformation of the Titanium Nickelide Single Crystals,” Fiz. Met. Metalloved. 89(2), 98–107 (2000) [Phys. Met. Metallogr. 89 (2), 196–205 (2000)].

    CAS  Google Scholar 

  9. N. S. Surikova and Yu. I. Chumlyakov, “Peculiarities of Deformation and Failure of Titanium Nickelide Single Crystals in Annealed State,” Fiz. Mezomekh. 3(1), 93–102 (2000).

    Google Scholar 

  10. J. C. Ewert, I. Böhm, R. Peter, and F. Haider, “The Role of the Martensite Transformation for the Mechanical Amorphisation of NiTi,” Acta Mater. 45(5), 2197–2206 (1997).

    Article  CAS  Google Scholar 

  11. H. P. Karnthaler, T. Waitz, C. Rentenberger, and B. Mingler, “TEM of Nanostructured Metals and Alloys,” Mater. Sci. Eng., A 387–389, 777–782 (2004).

    Google Scholar 

  12. Y. H. Kim, G. B. Cho, S. G. Hur, et al., “Nanocrystallization of a Ti-50.0 Ni (at %) Alloy by Cold Working and Stress/Strain Behavior,” Mater. Sci. Eng., A 438–440, 531–35 (2006).

    Google Scholar 

  13. Yu. A. Perlovich, V. A. Fesenko, and Yu. I. Chumlyakov, “Texture Extension during Rolling of Titanium-Nickel Single Crystals and Mechanisms of Their Plastic Deformation,” Fiz. Met. Metalloved., No. 11, 161–172 (1991).

  14. A. N. Tyumentsev, N. S. Surikova, I. Yu. Litovchenko, et al., “A New Mechanism of Plastic Flow in Localized-Deformation Bands and Deformation Twins of the B2 Phase of Titanium Nickelide by Nonequilibrium Martensitic Transformations in Stress Fields,” Fiz. Met. Metalloved. 95(1), 97–106 (2003) [Phys. Met. Metallogr. 95 (1), 92–101 (2003)].

    CAS  Google Scholar 

  15. A. N. Tyumentsev, N. S. Surikova, I. Yu. Litovchenko, et al., “Mechanism of Deformation and Crystal Lattice Reorientation in Strain Localization Bands and Deformation Twins of the B2-Phase of Titanium Nickelide,” Acta Mater. 52(7), 2067–2074 (2004).

    Article  CAS  Google Scholar 

  16. N. S. Surikova, A. N. Tyumentsev, O. V. Lysenko, et al., “Crystal-Lattice Distortions during Mechanical Twinning of the B2 Phase of Titanium Nickelide via the Mechanism of Local Reversible Martensitic Transformations,” Fiz. Met. Metalloved. 101(3), 247–254 (2006) [Phys. Met. Metallogr. 101 (3), 223–230 (2006)].

    CAS  Google Scholar 

  17. N. S. Surikova, A. N. Tyumentsev, and O. V. Lysenko, “Stress-Induced Martensitic Transformations in [001] Crystals of Titanium Nickelide and Its Relation to Mechanical Twinning in the B2 Phase,” Izv. Vyssh. Uchebn. Zaved., Fiz. 52(6), 58–67 (2009) [Russ. Phys. J. 52 (6), 612–621 (2009)].

    Google Scholar 

  18. V. N. Khachin, V. G. Pushchin, and V. V. Kondrat’ev, Titanium Nickelide: Structure and Properties (Nauka, Moscow, 1992) [in Russian].

    Google Scholar 

  19. K. Otsuka and X. Ren, “Physical Metallurgy of Ti-Ni-Based Shape Memory Alloys,” Prog. Mater. Sci. 50, 511–678 (2005).

    Article  CAS  Google Scholar 

  20. V. I. Zel’dovich, N. Yu. Frolova, V. P. Pilyugin, et al., “Formation of Amorphous Structure in Titanium Nickelide under Plastic Deformation,” Fiz. Met. Metalloved. 99(4), 90–100 (2005) [Phys. Met. Metallogr. 99 (4), 425–434 (2005)].

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © N.S. Surikova, A.A. Klopotov, E.A. Korznikova, 2010, published in Fizika Metallov i Metallovedenie, 2010, Vol. 110, No. 3, pp. 285–294.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Surikova, N.S., Klopotov, A.A. & Korznikova, E.A. Mechanisms of plastic deformation in microcrystalline and nanocrystalline TiNi-based alloys. Phys. Metals Metallogr. 110, 269–278 (2010). https://doi.org/10.1134/S0031918X10090103

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031918X10090103

Key words

Navigation