Skip to main content
Log in

Relationship between genome size and organismal complexity in the lineage leading from prokaryotes to mammals

  • Published:
Paleontological Journal Aims and scope Submit manuscript

Abstract

The lack of a strict relationship between genome size and organismal complexity (level of organization) is largely due to size variability of the facultative part of the genome. However, there is a direct relationship between the level of organization and the minimal genome size (MGS) in the lineage leading from prokaryotes to mammals, in which the tendency towards increasing complexity is especially clear. The dynamics of MGS in this lineage can be adequately described by the model of hyperexponential growth. This implies the existence of nonlinear positive feedbacks that account for the acceleration of MGS growth. The nature of these feedbacks is discussed, including the formation of new genes by means of recombination of the fragments of existing genes, formation of “niches” for new genes in the course of evolution of gene networks, and the expansion of regulatory regions. Hyperexponential growth of different variables related to the level of organization of the biosphere and society (biodiversity, MGS, size and complexity of organisms, world population, technological development, urbanization, etc.) suggests that the evolution of the biosphere and humanity in the direction of increasing complexity is a self-accelerating (autocatalytic) process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. C. Adami, C. Ofria, and T. C. Collier, “Evolution of Biological Complexity,” Proc. Natl. Acad. Sci. USA 97(9), 4463–4468 (2000).

    Article  Google Scholar 

  2. F. U. Battistuzzi, A. Feijao, and S. B. Hedges, “A Genomic Timescale of Prokaryote Evolution: Insights into the Origin of Methanogenesis, Phototrophy, and the Colonization of Land,” BMC Evol. Biol. 4, 44 (2004).

    Article  Google Scholar 

  3. N. J. Bowen and I. K. Jordan, “Transposable Elements and the Evolution of Eukaryotic Complexity,” Curr. Iss. Mol. Biol. 4(3), 65–76 (2002).

    Google Scholar 

  4. Complete Microbial Genomes. 2008. http://www.ncbi.nlm.nih.gov/genomes/lproks.cgi (accessed 11 Oct 2008).

  5. R. Dawkins, The Extended Phenotype: The Long Reach of the Gene (Oxford Univ. Press, Oxford, 1982).

    Google Scholar 

  6. D. L. Des Marais and M. D. Rausher, “Escape from Adaptive Conflict after Duplication in an Anthocyanin Pathway Gene,” Nature 454(7205), 762–765 (2008).

    Google Scholar 

  7. F. S. Dietrich, S. Voegeli, S. Brachat. et al., “The Ashbya gossypii Genome As a Tool for Mapping the Ancient Saccharomyces cerevisiae Genome,” Science 304(5668), 304–307 (2004).

    Article  Google Scholar 

  8. M. Eigen and P. Schuster, “The Hypercycle. A Principle of Natural Self-Organization. Part A: Emergence of the Hypercycle,” Naturwissenschaften 64(11), 541–565 (1977).

    Article  Google Scholar 

  9. Eukaryotic Genome Sequencing Projects. 2008. http://www.ncbi.nlm.nih.gov/genomes/leuks.cgi (accessed 11 Oct 2008).

  10. H. J. Falcon-Lang, M. J. Benton, and M. Stimson, “Ecology of Earliest Reptiles Inferred from Basal Pennsylvanian Trackways,” J. Geol. Soc. 164(6), 1113–1118 (2007).

    Article  Google Scholar 

  11. M. A. Fedonkin, “Two Records of Life: Experience of Comparison (Paleobiology and Genomics on the Early Stages of the Biosphere Evolution),” in Problems of Geology and Mineralogy, Ed. by A. M. Pystin (Geoprint, Syktyvkar, 2006), pp. 331–350 [in Russian].

    Google Scholar 

  12. T. R. Gregory, “Macroevolution, Hierarchy Theory, and the C-Value Enigma,” Paleobiology 30(2), 179–202 (2004a).

    Article  Google Scholar 

  13. T. R. Gregory, “Insertion-Deletion Biases and the Evolution of Genome Size,” Gene 324, 15–34 (2004b).

    Article  Google Scholar 

  14. T. R. Gregory, “The C-Value Enigma in Plants and Animals: A Review of Parallels and an Appeal for Partnership,” Ann. Bot. 95(1), 133–146 (2005).

    Article  Google Scholar 

  15. T. R. Gregory, “Animal Genome Size Database. 2008. http://www.genomesize.com.

  16. T. R. Gregory and P. D. N. Hebert, “The Modulation of DNA Content: Proximate Causes and Ultimate Consequences,” Genome Res. 9(4), 317–324 (1999).

    Google Scholar 

  17. L. E. Grinin and A. V. Korotayev, “The Political Development of World-System: Formal and Quantitative Analysis,” in History and Mathematics: Macrohistorical Dynamics of the Society and State, Ed. by S. Yu. Malkov, L. E. Grinin, and A. V. Korotayev (KomKniga/URSS, Moscow, 2007), pp. 49–101 [in Russian].

    Google Scholar 

  18. L. E. Grinin and A. V. Korotayev, Social Macroevolution: The Genesis and Transformations of the World System (LIBROKOM/URSS, Moscow, 2009) [in Russian].

    Google Scholar 

  19. L. E. Grinin, A. V. Markov, and A. V. Korotayev, Macroevolution in Living Nature and Society (LKI/URSS, Moscow, 2008) [in Russian].

    Google Scholar 

  20. M. Guttman, I. Amit, M. Garber, et al., “Chromatin Signature Reveals over a Thousand Highly Conserved Large Non-Coding RNAs in Mammals,” Nature 458(7235), 223–227 (2009).

    Article  Google Scholar 

  21. S. B. Heges and S. Kumar, “Genomic Clocks and Evolutionary Timescales,” Trends Genet. 19(4), 200–206 (2003).

    Article  Google Scholar 

  22. A. L. Hughes and M. K. Hughes, “Small Genomes for Better Flyers,” Nature 377(6548), 391 (1995).

    Article  Google Scholar 

  23. Ji Q., Luo Z.-X., Yuan C.-X., et al., “The Earliest Known Eutherian Mammal,” Nature 416(6883), 816–822 (2002).

    Article  Google Scholar 

  24. S. P. Kapitsa, “A Mathematical Model of the World Population Growth,” Math. Mod. 4(6), 65–79 (1992).

    Google Scholar 

  25. S. P. Kapitsa, General Theory of the Growth of Humankind: How Many People Have Lived, Live, and Are to Live on Earth (Nauka, Moscow, 1999) [in Russian].

    Google Scholar 

  26. N. A. Kolchanov, E. A. Anan'ko, F. A. Kolpakov, et al. “Gene Networks,” Mol. Biol. 34(4), 533–544 (2000) [Mol. Biol. 34 (4), 449–460 (2000)].

    Article  Google Scholar 

  27. N. A. Kolchanov, V. V. Suslov, and V. K. Shumnyi, “Molecular Evolution of Genetic Systems,” Paleontol. Zh., No. 6, 58–71 (2003) [Paleontol. J. 37 (6), 617–629 (2003)].

  28. N. A. Kolchanov, V. V. Suslov, and K. V. Gunbin, “Biological Evolution Simulation: Genetic Regulatory Systems and Biological Complexity Encoding,” Vestnik VOGiS 8(2), 86–89 (2004).

    Google Scholar 

  29. A. V. Korotaev, “The World System History Periodization and Mathematical Models of Socio-Historical Processes,” in History and Mathematics: The Problems of Periodization of Historical Macroprocesses, Ed. by L. E. Grinin, A. V. Korotaev, and S. Yu. Malkov (KomKniga/URSS, Moscow, 2006), pp. 116–167 [in Russian].

    Google Scholar 

  30. A. V. Korotaev, “The World System Urbanization Macrodynamics: A Quantitative Analysis,” in History and Mathematics: Macrohistorical Dynamics of the Society and State, Ed. by S. Yu. Malkov, L. E. Grinin, A.V. Korotaev (KomKniga/URSS, Moscow, 2007), pp. 21–39 [in Russian].

    Google Scholar 

  31. A. V. Korotayev and L. E. Grinin, “Urbanization and Political Development of the World System: Comparative Quantitative Analysis,” in History and Mathematics: Macrohistorical Dynamics of the Society and State, Ed. by S. Yu. Malkov, L. E. Grinin, and A. V. Korotayev (KomKniga/URSS, Moscow, 2007), pp. 102–141 [in Russian].

    Google Scholar 

  32. A. Korotayev, A. Malkov, and D. Khaltourina, Introduction to Social Macrodynamics: Compact Macromodels of the World System Growth (URSS, Moscow, 2006).

    Google Scholar 

  33. A. V. Korotayev, N. L. Komarova, and D. A. Khalturina, Laws of History. Secular Cycles and Millennial Trends. Demography. Economics. War (URSS/KomKniga, Moscow, 2007a) [in Russian].

    Google Scholar 

  34. A. V. Korotayev, A. S. Malkov, and D. A. Khalturina, Laws of History: Mathematical Simulation of the Development of the World System: Demography, Economics, Culture (URSS/KomKniga, Moscow, 2007b) [in Russian].

    Google Scholar 

  35. R. Lin, L. Ding, C. Casola, et al., “Transposase-Derived Transcription Factors Regulate Light Signaling in Arabidopsis,” Science 318(5854), 1302–1305 (2007).

    Article  Google Scholar 

  36. M. Lynch and J. S. Conery, “The Origins of Genome Complexity,” Science 302(5649), 1401–1404 (2003).

    Article  Google Scholar 

  37. A. V. Markov and Kulikov A.M., “Origin of Eukaryota: Conclusions Based on the Analysis of Protein Homologies in the Three Superkingdoms,” Paleontol. Zh., No. 4, 3–18 (2005) [Paleontol. J. 39 (4), 345–357 (2005)].

  38. A. V. Markov and A. V. Korotayev, “Hyperbolic Growth of Marine and Continental Biodiversity through the Phanerozoic and Community Evolution,” Zh. Obshch. Biol. 69(3), 175–194 (2008).

    Google Scholar 

  39. A. V. Markov and A. V. Korotayev, Hyperbolic Increase in Living Nature and Society (URSS, Moscow, 2009) [in Russian].

    Google Scholar 

  40. C. Marshall and H.-P. Schultze, “Relative Importance of Molecular, Neontological, and Paleontological Data in Understanding the Biology of the Vertebrate Invasion of Land,” J. Mol. Evol. 35(2), 93–101 (1992).

    Article  Google Scholar 

  41. T. S. Mikkelsen, M. J. Wakefield, B. Aken, et al., “Genome of the Marsupial Monodelphis domestica Reveals Innovation in Non-Coding Sequences,” Nature 447(7141), 167–177 (2007).

    Article  Google Scholar 

  42. W. J. Miller, J. F. McDonald, D. Nouaud, and D. Anxolabéhère, “Molecular Domestication-More than a Sporadic Episode in Evolution,” Genetica 107(1–3), 197–207 (1999).

    Article  Google Scholar 

  43. A. R. Muotri, M. C. Marchetto, N. G. Coufal, and F. H. Gage, “The Necessary Junk: New Functions for Transposable Elements,” Hum. Mol. Genet. 16(Spec. 2), R159–R167 (2007).

    Article  Google Scholar 

  44. A. Nakabachi, A. Yamashita, H. Toh, et al., “The 160-Kilobase Genome of the Bacterial Endosymbiont Carsonella,” Science 314(5797), 267 (2006).

    Article  Google Scholar 

  45. H. Ochman, “Genomes on the Shrink,” Proc. Natl. Acad. Sci. USA 102(34), 11959–11960 (2005).

    Article  Google Scholar 

  46. C. Ofria, C. Adami, and T. C. Collier, “Selective Pressures on Genomes in Molecular Evolution,” J. Theor. Biol. 222(4), 477–483 (2003).

    Google Scholar 

  47. C. L. Organ, A. M. Shedlock, A. Meade, et al., “Origin of Avian Genome Size and Structure in Non-Avian Dinosaurs,” Nature 446(7132), 180–184 (2007).

    Article  Google Scholar 

  48. Q. Pan, O. Shai, L. J. Lee, et al., “Deep Surveying of Alternative Splicing Complexity in the Human Transcriptome by High-Throughput Sequencing,” Nat. Genet. 40(12), 1413–1415 (2008).

    Article  Google Scholar 

  49. L. Patthy, “Genome Evolution and the Evolution of Exon-Shuffling—a Review,” Gene 238(1), 103–114 (1999).

    Article  Google Scholar 

  50. J. L. Payne, A. G. Boyer, J. H. Brown, et al., “Two-Phase Increase in the Maximum Size of Life over 3.5 Billion Years Reflects Biological Innovation and Environmental Opportunity,” Proc. Natl. Acad. Sci. USA 106(1), 24–27 (2009).

    Article  Google Scholar 

  51. C. Pellicciari, D. Formenti, C. A. Redi, and M. G. Manfredi Romanini, “DNA Content Variability in Primates,” J. Hum. Evol. 11(2), 131–141 (1982).

    Article  Google Scholar 

  52. N. H. Putnam, T. Butts, D. E. K. Ferrier, et al., “The Amphioxus Genome and the Evolution of the Chordate Karyotype,” Nature 453(71198), 1064–1071 (2008).

    Article  Google Scholar 

  53. R. A. Raff and T. C. Kaufman, Embryos, Genes, and Evolution: The Developmental Genetic Basis of Evolutionary Change (Macmillan, New York, 1983; Mir, Moscow, 1986).

    Google Scholar 

  54. B. Rasmussen, I. R. Fletcher, J. J. Brocks, and M. R. Kilburn, “Reassessing the First Appearance of Eukaryotes and Cyanobacteria,” Nature 455(7216), 1101–1104 (2008).

    Article  Google Scholar 

  55. A. Yu. Rozanov, “Fossil Bacteria, Sedimentogenesis, and the Early Biospheric Evolution,” Paleontol. Zh., No. 6, 41–49 (2003) [Paleontol. J. 37 (6), 600–608 (2003)].

  56. A. A. Sharov, “Genome Increase As a Clock for the Origin and Evolution of Life,” Biol. Direct 1, 17 (2006).

    Article  Google Scholar 

  57. D. G. Shu, Luo H-L., S. Conway Morris, et al., “Lower Cambrian Vertebrates from South China,” Nature 402(6757), 42–46 (1999).

    Article  Google Scholar 

  58. S. Stegemann, S. Hartmann, S. Ruf, and R. Bock, “High-Frequency Gene Transfer from the Chloroplast Genome to the Nucleus,” Proc. Natl. Acad. Sci. USA 100(15), 8828–8833 (2003).

    Article  Google Scholar 

  59. K. Takahashi, N. Hayashi, T. Shimokawa, et al., “Cooperative Regulation of Fc Receptor Gamma-Chain Gene Expression by Multiple Transcription Factors, Including Sp1, GABP, and Elf-1,” J. Biol. Chem. 283(22), 15134–15141 (2008).

    Article  Google Scholar 

  60. C. A. J. Thomas, “The Genetic Organization of Chromosomes,” Annu. Rev. Genet. 5, 237–256 (1971).

    Article  Google Scholar 

  61. J. N. Volff, “Turning Junk into Gold: Domestication of Transposable Elements and the Creation of New Genes in Eukaryotes,” Bioessays 28(9), 913–922 (2006).

    Article  Google Scholar 

  62. E. T. Wang, R. Sandberg, S. Luo, et al. “Alternative Isoform Regulation in Human Tissue Transcriptomes,” Nature 456(7221), 470–476 (2008).

    Article  Google Scholar 

  63. J. Xing, D. J. Witherspoon, D. A. Ray, et al., “Mobile DNA Elements in Primate and Human Evolution,” Yearb. Phys. Anthropol. (Suppl. 45), 2–19 (2007).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Markov.

Additional information

Original Russian Text © A.V. Markov, V.A. Anisimov, A.V. Korotayev, 2010, published in Paleontologicheskii Zhurnal, 2010, No. 4, pp. 3–14.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Markov, A.V., Anisimov, V.A. & Korotayev, A.V. Relationship between genome size and organismal complexity in the lineage leading from prokaryotes to mammals. Paleontol. J. 44, 363–373 (2010). https://doi.org/10.1134/S0031030110040015

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0031030110040015

Key words

Navigation