Skip to main content
Log in

Calibration of Temperature by Normalized Up-Conversion Fluorescence Spectra of Germanate Glasses and Glass Ceramics Doped with Erbium and Ytterbium Ions

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

A multivariate model of temperature calibration by the spectra of green up-conversion fluorescence based on the principal component analysis, cluster analysis, and the interval projection to latent structures is developed to select the best erbium- and ytterbium-doped germanate glasses and glass-ceramics for sensitive elements of fluorescent temperature sensors. The calibration model constructed for GeO2–Na2O–Yb2O3–MgO–La2O3–Er2O3 glass ceramics using 95 spectral variables is characterized by the best quality parameters, namely, the root-mean-square error is 0.37 K, the residual predictive deviation for a test sampling is >102, and the relative error does not exceed 0.20%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. F. J. Duarte, Tunable Laser Applications (CRC, Taylor Francis Group, New York, 2009).

    Google Scholar 

  2. W. Shi, Q. Fang, X. Zhu, R. Norwood, and N. Peyghambarian, Appl. Opt. 53, 6554 (2014).

    Article  ADS  Google Scholar 

  3. M. Mikami, H. Watanabe, K. Uheda, S. Shimooka, Y. Shimomura, T. Kurushima, and N. Kijima, IOP Conf. Ser.: Mater. Sci. Eng. 1, 1 (2009).

  4. J. E. Kogel, N. C. Trivedi, J. M. Barker, and S. T. Krukowski, Industrial Minerals and Rocks: Commodities, Markets, and Uses (Soc. Mining, Metall. Explorat., Littleton, CO, 2006).

    Google Scholar 

  5. X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, and X. Yan, RSC Adv. 5, 86219 (2015).

  6. V. P. Afanas’ev, V. N. Vasil’ev, A. I. Ignat’ev, E. V. Kolobkova, N. V. Nikonorov, A. I. Sidorov, and V. A. Tsekhomskii, J. Opt. Technol. 80, 635 (2013).

    Article  Google Scholar 

  7. L. J. Dowell, G. T. Gillies, S. W. Allison, and M. R. Cates, Tech. Rep. K/TS-11, 771 (U) (Martin Marietta Energy Syst. Inc., 1986), p. 77.

  8. B. A. Weinstein, Rev. Sci. Instrum. 57, 910 (1986).

    Article  ADS  Google Scholar 

  9. M. Outis, C. Laia, M. Oliveira, B. Monteiro, and C. A. Pereira, ChemPlusChem (2020). https://doi.org/10.1002/cplu.202000034

  10. I. E. Kolesnikov, A. A. Kalinichev, M. A. Kurochkin, E. V. Golyeva, A. S. Terentyeva, E. Yu. Kolesnikov, and E. Lähderanta, Sci. Rep. 9, 2043 (2019). https://doi.org/10.1038/s41598-019-38774-6

    Article  ADS  Google Scholar 

  11. V. Klinkov, V. A. Aseev, A. Semencha, and E. Tsimerman, Sens. Actuators, A 277, 157 (2018).

    Article  Google Scholar 

  12. F. Lahoz, I. R. Martín, K. Soler-Carracedo, J. M. Cáceres, J. Gil-Rostra, and F. Yubero, J. Lumin. 206, 492 (2019). https://doi.org/10.1016/j.jlumin.2018.10.103

    Article  Google Scholar 

  13. M. Kochanowicz, D. Dorosz, J. Zmojda, J. Dorosz, and P. Miluski, J. Lumin. 151, 155 (2014).

    Article  Google Scholar 

  14. M. A. Khodasevich and V. A. Aseev, Opt. Spectrosc. 124, 748 (2018).

    Article  ADS  Google Scholar 

  15. K. H. Esbensen and P. Geladi, Compr. Chemometr. 2, 211 (2009).

    Article  Google Scholar 

  16. P. Geladi and B. Kowalski, Anal. Chim. Acta 185, 1 (1986).

    Article  Google Scholar 

  17. M. A. Khodasevich and N. A. Saskevich, Vest. NAN Belarusi, Ser. Fiz.-Mat. Nauk 54, 69 (2018).

    Google Scholar 

  18. L. Norgaard, A. Saudland, J. Wagner, J. P. Nielsen, L. Munck, and S. B. Engelsen, Appl. Spectrosc. 54, 413 (2000).

    Article  ADS  Google Scholar 

  19. Y. P. Du, Y. Z. Liang, J. H. Jiang, R. J. Berry, and Y. Ozaki, Anal. Chim. Acta 501, 183 (2004).

    Article  Google Scholar 

  20. P. C. Williams and D. Sobering, in Near Infrared Spectroscopy: The Future Waves, Ed. by A. M. C. Daves and P. C. Williams (NIR Publ., Chichester, 1995), p. 185.

    Google Scholar 

  21. V. Rai and S. B. Rai, Spectrochim. Acta, Part A 68, 1406 (2007).

    Article  ADS  Google Scholar 

  22. M. A. Khodasevich, V. A. Aseev, Yu. A. Varaksa, E. V. Kolobkova, and G. V. Sinitsyn, Mater. Phys. Mech. 24, 18 (2015).

    Google Scholar 

Download references

Funding

This work was supported by the Belarusian Republican Foundation for Basic Research (project no. F20R-342) and the Russian Foundation for Basic Research (project 20-58-00054 Bel-A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Khodasevich.

Additional information

Translated by M. Basieva

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aseev, V.A., Borisevich, D.A., Khodasevich, M.A. et al. Calibration of Temperature by Normalized Up-Conversion Fluorescence Spectra of Germanate Glasses and Glass Ceramics Doped with Erbium and Ytterbium Ions. Opt. Spectrosc. 129, 297–302 (2021). https://doi.org/10.1134/S0030400X21030048

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21030048

Keywords:

Navigation