Skip to main content
Log in

Generation of Extremely Short Pulses of Terahertz Radiation Based on Superradiation of a Three-Level Resonant Medium

  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

The possibility of generating extremely short pulses of terahertz (THz) radiation due to superradiance—collective spontaneous emission of a thin layer of a three-level resonant medium excited by a pair of attosecond (or femtosecond) pulses—is studied theoretically. The source of a terahertz pulse is a pulse of stopped nonlinear polarization of the medium, which arises in the interval between its excitation and deexcitation. The case of a three-level medium with equidistant energy levels (as in a quantum harmonic oscillator) the transition frequency of which lies in the THz range is considered. The influence of the populations of the excited levels of the medium on the shape of a terahertz superradiance pulse is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. H. G. Roskos, M. D. Thomson, M. Kress, and T. Loeffler, Laser Photon. Rev. 1, 349 (2007).

    Article  ADS  Google Scholar 

  2. K. Reiman, Rep. Prog. Phys. 70, 1597 (2007).

    Article  ADS  Google Scholar 

  3. S. Lepeshov, A. Gorodetsky, A. Krasnok, E. Rafailov, and P. Belov, Laser Photon. Rev. 11, 1770001 (2017).

    Article  ADS  Google Scholar 

  4. J. A. Fülop, S. Tzortzakis, and T. Kampfrath, Adv. Opt. Mater. 8, 1900681 (2020).

    Article  Google Scholar 

  5. A. V. Pakhomov, R. M. Arkhipov, I. V. Babushkin, M. V. Arkhipov, Yu. A. Tolmachev, and N. N. Rosanov, Phys. Rev. A 95, 013804 (2017).

    Article  ADS  Google Scholar 

  6. A. V. Pakhomov, R. M. Arkhipov, M. V. Arkhipov, A. Demircan, U. Morgner, and N. N. Rosanov, Sci. Rep. 9, 7444 (2019).

    Article  ADS  Google Scholar 

  7. R. M. Arkhipov, A. V. Pakhomov, M. V. Arkhipov, A. Demircan, U. Morgner, N. N. Rosanov, and I. Babushkin, Phys. Rev. A 101, 043838 (2020).

    Article  ADS  Google Scholar 

  8. R. H. Dicke, Phys. Rev. 93, 99 (1954).

    Article  ADS  Google Scholar 

  9. N. E. Rehler and J. H. Eberly, Phys. Rev. A 3, 1735 (1971).

    Article  ADS  Google Scholar 

  10. R. Bonifacio and L. Lugiato, Phys. Rev. A 11, 1507 (1975).

    Article  ADS  Google Scholar 

  11. J. C. MacGillivray and M. S. Feld, Phys. Rev. A 14, 1169 (1976).

    Article  ADS  Google Scholar 

  12. L. Allen and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley, New York, 1975).

    Google Scholar 

  13. M. Gross and S. Haroche, Phys. Rep. 93, 301 (1982).

    Article  ADS  Google Scholar 

  14. A. V. Andreev, V. I. Emel’yanov, and Yu. A. Il’inskii, Collective Effects in Optics: Superradiance and Phase Transitions (Nauka, Moscow, 1988; Inst. Phys., Bristol, 1993).

  15. M. G. Benedict, A. M. Ermolaev, V. A. Malyshev, I. V. Sokolov, and E. D. Trifonov, Super-Radiance Multiatomic Coherent Emission (CRC, Boca Raton, 1996).

    Google Scholar 

  16. V. V. Zheleznyakov, V. V. Kocharovskii, and V. V. Kocharovskii, Sov. Phys. Usp. 32, 835 (1989).

    Article  ADS  Google Scholar 

  17. V. V. Kocharovsky, V. V. Zheleznyakov, E. R. Kocharovskaya, and V. V. Kocharovsky, Phys. Usp. 60, 345 (2017).

    Article  ADS  Google Scholar 

  18. V. V. Temnov and U. Woggon, Phys. Rev. Lett. 95, 243603 (2005).

    Article  ADS  Google Scholar 

  19. V. I. Yukalov and E. P. Yukalova, Phys. Rev. B 81, 075308 (2010).

    Article  ADS  Google Scholar 

  20. M. Scheibner, T. Schmidt, L. Worschech, A. Forchel, G. Bacher, T. Passow, and D. Hommel, Nat. Phys. 3, 106 (2007).

    Article  Google Scholar 

  21. W. Zhang, E. R. Brown, A. Mingardi, R. P. Mirin, N. Jahed, and D. Saeedkia, Appl. Sci. 9, 3014 (2019).

    Article  Google Scholar 

  22. S. Pulkin, I. Korshok, A. Kalinichev, M. Balabas, T. Y. Ivanova, and D. Ivanov, J. Phys. B: At. Mol. Opt. Phys. 53, 175003 (2020).

    Article  ADS  Google Scholar 

  23. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. V. Pakhomov, and N. N. Rosanov, Opt. Spectrosc. 128, 529 (2020).

    Article  ADS  Google Scholar 

  24. R. M. Arkhipov, M. V. Arkhipov, I. Babushkin, A. V. Pakhomov, and N. N. Rosanov, Opt. Spectrosc. 128, 1857 (2020).

    Article  ADS  Google Scholar 

  25. M. T. Hassan, T. T. Luu, A. Moulet, O. Raskazovskaya, P. Zhokhov, M. Garg, N. Karpowicz, A. M. Zheltikov, V. Pervak, F. Krausz, and E. Goulielmakis, Nature (London, U.K.) 530, 66 (2016).

    Article  ADS  Google Scholar 

  26. G. M. Rossi, R. E. Mainz, Y. Yang, F. Scheiba, M. A. Silva-Toledo, S. H. Chia, P. D. Keathley, S. Fang, O. D. Mücke, C. Manzoni, G. Cerullo, G. Cirmi, and F. X. Kärtner, Nat. Photon. 14, 629 (2020).

    Article  ADS  Google Scholar 

  27. H.-C. Wu, and J. Meyerter-Vehn, Nat. Photon. 6, 304 (2012).

    Article  ADS  Google Scholar 

  28. J. Xu, B. Shen, X. Zhang, Y. Shi, L. Ji, L. Zhang, T. Xu, W. Wang, X. Zhao, and Z. Xu, Sci. Rep. 8, 2669 (2018).

    Article  ADS  Google Scholar 

  29. R. M. Arkhipov, M. V. Arkhipov, and N. N. Rosanov, Quantum Electron. 50, 801 (2020).

    Article  ADS  Google Scholar 

  30. A. Yariv, Quantum Electronics (Sov. Radio, Moscow, 1980; Wiley, New York, 1989).

  31. N. N. Rosanov, Dissipative Optical Solitons. From Micro to Nano to Atto (Fizmatlit, Moscow, 2011) [in Russian].

    Google Scholar 

  32. B. Ferguson and X. C. Zhang, Nat. Mater. 1, 26 (2002).

    Article  ADS  Google Scholar 

  33. P. U. Jepsen, D. G. Cooke, and M. Koch, Laser Photon. Rev. 5, 124 (2011).

    Article  ADS  Google Scholar 

  34. E. P. Parrott and J. A. Zeitler, Appl. Spectrosc. 69, 1 (2015).

    Article  ADS  Google Scholar 

  35. Y. S. Lee, in Principles of Terahertz Science and Technology (Springer, Boston, 2009), p. 1.

    Google Scholar 

  36. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 3: Quantum Mechanics: Non-Relativistic Theory (Nauka, Moscow, 1989; Pergamon, New York, 1977).

  37. R. R. Leyman, A. Gorodetsky, N. Bazieva, G. Moli, A. Krotkus, E. Clarke, and E. U. Rafailov, Laser Photon. Rev. 10, 772 (2016).

    Article  ADS  Google Scholar 

  38. G. Scalari, C. Walther, M. Fischer, R. Terazzi, H. Beere, D. Ritchie, and J. Faist, Laser Photon. Rev. 3, 45 (2009).

    Article  ADS  Google Scholar 

  39. H. Choi, V. M. Gkortsas, L. Diehl, D. Bour, S. Corzine, J. Zhu, G. Höfler, F. Capass, F. X. Kärtner, and T. B. Norris, Nat. Photon. 4, 706 (2010).

    Article  ADS  Google Scholar 

  40. F. Wang, K. Maussang, S. Moumdji, R. Colombelli, J. R. Freeman, I. Kundu, L. Li, E. H. Linfield, A. G. Davies, J. Mangeney, J. Tignon, and S. S. Dhillon, Optica 2, 944 (2015).

    Article  ADS  Google Scholar 

  41. S. Barbieri, M. Ravaro, P. Gellie, G. Santarelli, C. Manquest, C. Sirtori, S. P. Khanna, E. H. Linfield, and A. G. Davies, Nat. Photon. 5, 306 (2011).

    Article  ADS  Google Scholar 

  42. D. Bachmann, M. Rösch, M. J. Süüess, M. Beck, K. Unterrainer, J. Darmo, J. Faist, and G. Scalari, Optica 3, 1087 (2016).

    Article  ADS  Google Scholar 

  43. R. Paiella, F. Capasso, C. Gmachl, D. L. Sivco, J. N. Baillargeon, A. L. Hutchinson, A. Y. Cho, and H. Liu, Science (Washington, DC, U. S.) 290, 1739 (2000).

    Article  ADS  Google Scholar 

  44. P. Tzenov, I. Babushkin, R. Arkhipov, M. Arkhipov, N. Rosanov, U. Morgner, and C. Jirauschek, New J. Phys. 20, 053055 (2018).

    Article  ADS  Google Scholar 

  45. S. A. Akhmanov and N. I. Koroteev, Nonlinear Optics Techniques in Light Scattering Spectroscopy: Active Light Scattering Spectroscopy (Nauka, Moscow, 1981) [in Russian].

    Google Scholar 

  46. M. V. Arkhipov, R. M. Arkhipov, A. V. Pakhomov, I. V. Babushkin, A. Demircan, U. Morgner, and N. N. Rosanov, Opt. Lett. 42, 2189 (2017).

    Article  ADS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to Vl.V. Kocharovskii, E.R. Kocharovskaya, M.V. Arkhipov, I.V. Babushkin, A.V. Pakhomov, and S.A. Pulkin for fruitful discussions of the phenomenon of superradiance, which stimulated us to write this communication.

Funding

This work was financially supported by the Russian Science Foundation (project no. 17-19-01097-P).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. M. Arkhipov.

Ethics declarations

The authors declare that they have no conflict of interest.

Additional information

Translated by V. Rogovoi

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arkhipov, R.M., Rosanov, N.N. Generation of Extremely Short Pulses of Terahertz Radiation Based on Superradiation of a Three-Level Resonant Medium. Opt. Spectrosc. 129, 289–296 (2021). https://doi.org/10.1134/S0030400X21030036

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X21030036

Keywords:

Navigation