Skip to main content
Log in

Molecular Structure, Vibrational Spectra, Molecular Docking, and ADMET Study of Cellulose Triacetate II

  • SPECTROSCOPY OF CONDENSED MATTER
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

People have started to look for alternative sources because of the health problems created by petrochemical products used in all areas of human life and environmental problems that remain intact in nature for years. In this study, molecular structure analysis of cellulose triacetate II (CTA II) molecule, obtained from cellulose II and acetate, was carried out. There is an important relationship between the structure and activity of molecules, so it is very important to determine the geometric structure of a molecule. Therefore, using density functional theory (DFT) the most stable molecular geometries of the cellulose triacetate II monomer (C12H18O9) as well as dimer (C24H36O18), which included intermolecular H-bonding, were calculated. The analogous calculations were carried out for the (CTA-II)2 nano-cluster (C24H34O17), which represents the local structure of CTA-II crystal, and created by binding the two most stable CTA II molecules by covalent bond. Scaled wavenumbers and potential energy distribution of the vibrational modes of CTA monomer and (CTA-II)2 nano-cluster were computed. In order to evaluate the interaction of CTA II with the Aspergillus niger cellulase enzyme,which is an important that is active in cellulose digestion and CTA II, molecular docking studies were carried out. H-binding interactions between CTA II (in monomeric, dimeric, and cluster forms) and the active site of the Aspergillus niger cellulase enzyme were shown. Moreover, in silico ADMET prediction study was calculated for CTA-II monomer to predict its druglikeness properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. R. S. Stein, J. Polym. Sci. A 32, 3215 (1994).

    Article  Google Scholar 

  2. J. Puls, C. Altaner, and B. Saake, Macromol. Symp. 208, 239 (2004).

    Article  Google Scholar 

  3. W. J. Roff and J. R. Scott, Fibres, Films, Plastics and Rubbers: A Handbook of Common Polymers (Elsevier, London, 1971).

    Google Scholar 

  4. B. S. Sprague, J. L. Riley, and H. D. Noether, Textile Res. J. 28, 275 (1958).

    Article  Google Scholar 

  5. V. T. Stannett, Cellulose Acetate Plastics (Temple Press, London, 1950).

    Google Scholar 

  6. L. J. Tanghe, L. J. Genung, and J. W. Mench, Methods Carbohydr. Chem. 14, 193 (1963).

    Google Scholar 

  7. C. M. Buchanan, J. A. Hyatt, and D. W. Lowman, J. Am. Chem. Soc. 111, 7312 (1989).

    Article  Google Scholar 

  8. E. J. Francotte, J. Chromatogr., A 666, 565 (1994).

  9. H. Sata, M. Murayama, and S. Shimamoto, Macromol. Symp. 208, 323 (2004).

    Article  Google Scholar 

  10. H. V. Tilbeurgh, P. Tomme, M. Claeyssens, R. Bikhabai, and G. Pettersson, FEBS Lett. 204, 223 (1986).

    Article  Google Scholar 

  11. P. Tomme, H. V. Tilbeurgh, G. Pettersson, J. V. Damme, J. Vandekerchove, J. Knowles, T. T. Teeri, and M. Claeyssens, Eur. J. Biochem. 170, 575 (1988).

    Article  Google Scholar 

  12. J. Gill, J. E. Rixon, D. N. Bolam, S. McQueen-Mason, P. J. Simpson, M. P. Williamson, G. P. Hazlewood, and H. J. Gilbert, J. Biochem. 342, 473 (1999).

    Article  Google Scholar 

  13. C. S. Nodvig, J. B. Nielsen, M. E. Kogle, and U. H. Mortensen, PloS One 10, e0133085 (2015).

    Article  Google Scholar 

  14. M. J. E. A. Frisch, G. W. Trucks, H. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, et al., Gaussian 03, Revision C.02 (Gaussian Inc., Wallingford, CT, 2004).

  15. A. D. Becke, J. Chem. Phys. 98, 5648 (1993).

    Article  ADS  Google Scholar 

  16. J. D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys. 10, 6615 (2008).

    Article  Google Scholar 

  17. J. D. Chai and M. Head-Gordon, J. Chem. Phys. 128, 084106 (2008).

    Article  ADS  Google Scholar 

  18. T. Sundius, J. Mol. Struct. 218, 321 (1990).

    Article  ADS  Google Scholar 

  19. T. Sundius, Vibr. Spectrosc. 29, 89 (2002).

    Article  Google Scholar 

  20. P. Pulay, G. Fogarasi, G. Pongor, J. E. Boggsand, and A. Vargha, J. Am. Chem. Soc. 105, 7037 (1983).

    Article  Google Scholar 

  21. S. P. Firsov and R. G. Zhbankov, J. Appl. Spectrosc. 37, 940 (1982).

    Article  ADS  Google Scholar 

  22. E. Roche, H. Chanzy, M. Boudeulle, R. H. Marchessault, and P. Sundararajan, Macromolecules 11, 86 (1978).

    Article  ADS  Google Scholar 

  23. N. Abidi, L. Cabrales, and C. H. Haigler, Carbohydr. Polym. 100, 9 (2014).

    Article  Google Scholar 

  24. Y. S. Mary, L. Ushakumari, B. Harikumar, H. T. Varghese, and C. Y. Panicker, J. Iranian Chem. Soc. 6, 138 (2009).

    Google Scholar 

  25. L. Padmaja, C. Ravikumar, C. James, V. S. Jayakumar, and I. H. Joe, Spectrochim. Acta, A 71, 252 (2008).

    Article  ADS  Google Scholar 

  26. N. P. Roeges and J. M. A. Baas, A Guide to the Complete Interpretation of Infrared Spectra of Organic Structures (Wiley, Chichester, 1994).

    Google Scholar 

  27. T. Lengauer and M. Rarey, Curr. Opin. Struct. Biol. 5, 402 (1996).

    Article  Google Scholar 

  28. D. B. Kitchen, H. Decornez, J. R. Furr, and J. Bajorath, Nat. Rev. Drug Discov. 3, 935 (2004).

    Article  Google Scholar 

  29. S. Khademi, D. Zhang, S. M. Swanson, A. Wartenberg, K. Witte, and E. F. Meyer, Acta Crystallogr., D 58, 660 (2002).

    Article  Google Scholar 

  30. J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, and K. Schulten, J. Comput. Chem. 26, 1781 (2005).

    Article  Google Scholar 

  31. A. D. MacKerell, N. Banavali, and N. Foloppe, Biopolymers 56, 257 (2001).

    Article  Google Scholar 

  32. W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M. L. Klein, J. Chem. Phys. 79, 926 (1983).

    Article  ADS  Google Scholar 

  33. W. Humphrey, A. Dalke, and K. Schulten, J. Mol. Graph. 14, 33 (1996).

    Article  Google Scholar 

  34. T. Darden, D. York, and L. G. Pedersen, Chem. Phys. 98, 10089 (1993).

    ADS  Google Scholar 

  35. S. E. Feller, Y. Zhang, R. W. Pastor, and B. R. Brooks, J. Chem. Phys. 103, 4613 (1995).

    Article  ADS  Google Scholar 

  36. E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, and T. E. Ferrin, J. Comput. Chem. 25, 1605 (2004).

    Article  Google Scholar 

  37. T. Nauli, J. Kimia Terapan Indonesia 16, 94 (2014).

  38. OSIRIS Property Explorer (Actelion Pharmaceuticals Ltd., Allschwil, Switzerland, 2010). https://www.organic-chemistry.org/prog/peo/.

  39. K. T. Savjani, A. K. Gajjar, and J. K. Savjani, Drug Solubility: Importance and Enhancement Techniques (ISRN Pharmaceutics, 2012).

  40. E. J. Lien and P. H. Wang, J. Pharm. Sci. 69, 648 (1980).

    Article  Google Scholar 

  41. https://www.molinspiration.com/docu/miscreen/druglikeness.html.

  42. M. P. Edwards and D. A. Price, Ann. Rep. Med. Chem. 45, 380 (2010).

    Google Scholar 

  43. J. Hermida, M. P. Fernandez, and J. C. Tutor, Clin. Labor. 48, 415 (2002).

    Google Scholar 

  44. Y. H. Zhao, J. Le, M. H. Abraham, A. Hersey, P. J. Eddershaw, C. N. Luscombe, D. Boutina, G. Beck, B. Sherborne, I. Cooper, and J. A. Platts, J. Pharm. Sci. 90, 749 (2001).

    Article  Google Scholar 

  45. F. J. Sharom, Essays Biochem. 50, 161 (2011).

    Article  Google Scholar 

  46. S. Yamashita, T. Furubayashi, M. Kataoka, T. Sakane, H. Sezaki, and H. Tokuda, Eur. J. Pharm. Sci. 10, 195 (2000).

    Article  Google Scholar 

  47. J. D. Irvine, L. Takahashi, K. Lockhart, J. Cheong, J. W. Tolan, H. E. Selick, and J. R. Grove, J. Pharm. Sci. 88, 28 (1999).

    Article  Google Scholar 

  48. J. König, F. Müller, and M. F. Fromm, Pharm. Rev. 65, 944 (2013).

    Article  Google Scholar 

  49. S. Igel, S. Drescher, T. Mürdter, U. Hofmann, G. Heinkele, H. Tegude, et al., Clin. Pharmacokinet. 46, 777 (2007).

    Article  Google Scholar 

  50. R. H. Ho and R. B. Kim, Clin. Pharmacol. Ther. 78, 260 (2005).

    Article  Google Scholar 

  51. F. Cheng, W. Li, Y. Zhou, J. Shen, Z. Wu, G. Liu, et al., J. Chem. Inf. Model. 52, 3099 (2012).

    Article  Google Scholar 

Download references

Funding

This study was supported by the Research funds of Istanbul University [ÖNAP-2423], [N-3341], [N-3875].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sefa Celik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Celik, S., Demirag, A.D., Ozel, A.E. et al. Molecular Structure, Vibrational Spectra, Molecular Docking, and ADMET Study of Cellulose Triacetate II. Opt. Spectrosc. 128, 1138–1150 (2020). https://doi.org/10.1134/S0030400X20080329

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20080329

Keywords:

Navigation