Skip to main content
Log in

IR Luminescence of Polyfunctional Associates of Indocyanine Green and Ag2S Quantum Dots

  • NANOPHOTONICS
  • Published:
Optics and Spectroscopy Aims and scope Submit manuscript

Abstract

In this work, manifestations of IR luminescence sensitization of Indocyanine Green during conjugation with colloidal Ag2S quantum dots with an average size of 2.2 and 3.7 nm, passivated with thioglycolic acid molecules (Ag2S/TGA QDs) are studied using absorption and luminescence techniques. The possibility of enhancing luminescence in the dye monomer band (820 nm) under excitation at 660 nm by a factor of 6 in the presence of Ag2S/TGA QDs (2.2 nm) due to a decrease in the polymethine dye chain movement via coordination interaction with QDs was demonstrated. The way to switch-over from the first therapeutic window of biological tissue transparency (NIR-I, 700–950 nm) to the second (NIR-II, 1000–1700 nm), based on sensitization of IR luminescence of Ag2S/TGA QDs with an average size of 3.7 nm in the region of 1040 nm due to of resonance non-radiative transfer of excitation energy from Ag2S/TGA (2.2 nm) QDs at 900 nm to Ag2S/TGA QDs (3.7 nm) via the J-aggregate of ICG dye, which acts as an exciton bridge.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

REFERENCES

  1. M. Ogawa, N. Kosaka, P. L. Choyke, and H. Kobayashi, Cancer Res. 69, 1268 (2009). https://doi.org/10.1158/0008-5472.can-08-3116

    Article  Google Scholar 

  2. P. Xue, R. Yang, L. Sun, Q. Li, L. Zhang, Zh. Xu, and Y. Kang, Nano-Micro Lett. 10 (74), 1 (2018). https://doi.org/10.1007/s40820-018-0227-z

    Article  ADS  Google Scholar 

  3. S. Reindl, A. Penzkofer, S. H. Gong, M. Landthaler, R. Szeimies, C. Abels, and W. Bumler, J. Photochem. Photobiol., A 105, 65 (1997). https://doi.org/10.1016/s1010-6030(96)04584-4

    Article  Google Scholar 

  4. R. Philip, A. Penzkofer, W. Bumler, R. Szeimies, and C. Abels, J. Photochem. Photobiol., A 96, 137 (1996). https://doi.org/10.1016/1010-6030(95)04292-x

    Article  Google Scholar 

  5. F. Rotermund, R. Weigand, W. Holzer, M. Wittmann, and A. Penzkofer, J. Photochem. Photobiol., A 110, 75 (1997). https://doi.org/10.1016/s1010-6030(97)00167-6

    Article  Google Scholar 

  6. A. Gerega, N. Zolek, T. Soltysinski, D. Milej, P. Sawosz, B. Toczylowska, and A. Liebert, J. Biomed. Opt. 16, 067010 (2011). https://doi.org/10.1117/1.3593386

    Article  ADS  Google Scholar 

  7. M. L. J. Landsman, G. Kwant, G. A. Mook, and W. G. Zijlstra, J. Appl. Physiol. 40, 575 (1976). https://doi.org/10.1152/jappl.1976.40.4.575

    Article  Google Scholar 

  8. N. Y. Hong, H. R. Kim, H. M. Lee, D. K. Sohn, and K. G. Kim, Biomed. Opt. Express 7, 1637 (2016). https://doi.org/10.1364/BOE.7.001637

    Article  Google Scholar 

  9. T. Jin, S. Tsuboi, A. Komatsuzaki, Y. Imamura, Y. Muranaka, T. Sakata, and H. Yasuda, Med. Chem. Commun. 7, 623 (2016). https://doi.org/10.1039/c5md00580a

    Article  Google Scholar 

  10. E. H. Lee, J. K. Kim, J. S. Lim, and S. J. Lim, Colloids Surf., B 136, 305 (2015). https://doi.org/10.1016/j.colsurfb.2015.09.025

    Article  Google Scholar 

  11. A. K. Kirchherr, A. Briel, and K. Mäder, Mol. Pharm. 6, 480 (2009). https://doi.org/10.1021/mp8001649

    Article  Google Scholar 

  12. B. Jung, V. I. Vullev, and B. Anvari, IEEE J. Sel. Top. Quantum Electron. 20, 7000409 (2014). https://doi.org/10.1109/jstqe.2013.2278674

    Article  Google Scholar 

  13. W. Holzer, M. Mauerer, A. Penzkofer, R. M. Szeimies, C. Abels, M. Landthaler, and W. Bumler, J. Photochem. Photobiol., B 47, 155 (1998). https://doi.org/10.1016/s1011-1344(98)00216-4

  14. H. Gratz, A. Penzkofer, C. Abels, R.-M. Szeimies, M. Landthaler, and W. Bäumler, J. Photochem. Photobiol., A 128, 101 (1999). https://doi.org/10.1016/S1010-6030(99)00174-4

  15. M. Fuyuki, K. Furuta, and A. Wada, J. Photochem. Photobiol., A 252, 152 (2013). https://doi.org/10.1016/j.jphotochem.2012.12.002

    Article  Google Scholar 

  16. S. Mindt, I. Karampinis, M. John, M. Neumaier, and K. Nowak, Photochem. Photobiol. Sci. 17, 1189 (2018). https://doi.org/10.1039/c8pp00064f

    Article  Google Scholar 

  17. E. I. Altinoglu, T. J. Russin, J. M. Kaiser, B. M. Barth, P. C. Eklund, M. Kester, and J. H. Adair, ACS Nano 2, 2075 (2008). https://doi.org/10.1021/nn800448r

    Article  Google Scholar 

  18. C. H. Lee, S. H. Cheng, Y. J. Wang, Y. C. Chen, N. T. Chen, J. Souris, C. T. Chen, C. Y. Mou, C. S. Yang, and L. W. Lo, Adv. Funct. Mater. 19, 215 (2009). https://doi.org/10.1002/adfm.200800753

    Article  Google Scholar 

  19. R. H. Patel, A. S. Wadajkar, N. L. Patel, V. C. Kavuri, K. T. Nguyen, and H. Liu, J. Biomed. Opt. 17, 046003 (2012). https://doi.org/10.1117/1.jbo.17.4.046003

    Article  ADS  Google Scholar 

  20. F. P. Navarro, M. Berger, S. Guillermet, V. Josserand, L. Guyon, E. Neumann, F. Vinet, and I. Texier, J. Biomedical Nanotechnol. 8, 730 (2012). https://doi.org/10.1166/jbn.2012.1430

    Article  Google Scholar 

  21. Z. Sheng, D. Hu, M. Zheng, P. Zhao, H. Liu, D. Gao, P. Gong, G. Gao, P. Zhang, Y. Ma, and L. Cai, ACS Nano 8, 12310 (2014). https://doi.org/10.1021/nn5062386

    Article  Google Scholar 

  22. Q. Chen, C. Liang, X. Wang, J. He, Y. Li, and Z. Liu, Biomaterials 35, 9355 (2014). https://doi.org/10.1016/j.biomaterials.2014.07.062

    Article  Google Scholar 

  23. P. Huang, Y. Gao, J. Lin, H. Hu, H. Liao, X. Yan, Y. Tang, A. Jin, J. Song, G. Niu, G. Zhang, F. Horkay, and X. Chen, ACS Nano 9, 9517 (2015). https://doi.org/10.1021/acsnano.5b03874

    Article  Google Scholar 

  24. G. Kim, S. W. Huang, K. C. Day, M. O’Donnell, R. R. Agayan, M. A. Day, R. Kopelman, and S. Ashkenazi, J. Biomed. Opt. 12, 044020 (2007). https://doi.org/10.1117/1.2771530

    Article  ADS  Google Scholar 

  25. O. V. Ovchinnikov, M. S. Smirnov, T. S. Shatskikh, V. Y. Khokhlov, B. I. Shapiro, A. G. Vitukhnovsky, and S. A. Ambrozevich, J. Nanopart. Res. 16, 2286 (2014). https://doi.org/10.1007/s11051-014-2286-5

    Article  ADS  Google Scholar 

  26. A. Rakovich, D. Savateeva, T. Rakovich, J. F. Donegan, Y. P. Rakovich, V. Kelly, V. Lesnyak, and A. Eychmüller, Nanoscale Res. Lett. 5, 753 (2010). https://doi.org/10.1007/s11671-010-9553-x

    Article  ADS  Google Scholar 

  27. T. Kondratenko, A. Zvyagin, M. Smirnov, I. Grevtseva, A. Perepelitsa, and O. Ovchinnikov, J. Lumin. 208, 193 (2019). https://doi.org/10.1016/j.jlumin.2018.12.042

    Article  Google Scholar 

  28. T. S. Kondratenko, I. G. Grevtseva, A. I. Zvyagin, O. V. Ovchinnikov, and M. S. Smirnov, Opt. Spectrosc. 124, 673 (2018). https://doi.org/10.1134/s0030400x18050090

    Article  ADS  Google Scholar 

  29. O. V. Ovchinnikov, I. G. Grevtseva, M. S. Smirnov, T. S. Kondratenko, A. S. Perepelitsa, S. V. Aslanov, V. Yu. Khokhlov, E. P. Tatyanina, and A. S. Matsukovich, Opt. Quantum Electron. (2020, in press).

  30. J. Zweck and A. Penzkofer, Chem. Phys. 269, 399 (2001). https://doi.org/10.1016/S0301-0104(01)00368-8

    Article  Google Scholar 

  31. L. Dworak, A. J. Reuss, M. Zastrow, K. Rück-Braun, and J. Wachtveitl, Nanoscale 6, 14200 (2014). https://doi.org/10.1039/c4nr05144k

    Article  ADS  Google Scholar 

  32. A. P. Stupak, T. Blaudeck, E. I. Zenkevich, S. Krause, and C. von Borczyskowski, Phys. Chem. Chem. Phys. 20, 18579 (2018). https://doi.org/10.1039/c8cp02846j

    Article  Google Scholar 

  33. A. T. N. Kumar, S. A. Carp, J. Yang, A. Ross, Z. Medarova, and C. Ran, J. Biomed. Opt. 22, 040501 (2017). https://doi.org/10.1117/1.JBO.22.4.040501

    Article  ADS  Google Scholar 

  34. Ch. Wang and E. A. Weiss, Nano Lett. 17, 5666 (2017). https://doi.org/10.1021/acs.nanolett.7b02559

    Article  ADS  Google Scholar 

  35. T. C. Barros, S. H. Toma, H. E. Toma, E. L. Bastos, and M. S. Baptista, J. Phys. Org. Chem. 23, 893 (2010). https://doi.org/10.1002/poc.1692

    Article  Google Scholar 

  36. A. Tubtimtae, K.-Y. Cheng, and M.-W. Lee, J. Solid State Electrochem. 18, 1627 (2014). https://doi.org/10.1007/s10008-014-2385-3

    Article  Google Scholar 

  37. S. Lin, Y. Feng, X. Wen, P. Zhang, S. Woo, S. Shrestha, G. Conibeer, and S. Huang, J. Phys. Chem. 119, 867 (2015). https://doi.org/10.1021/jp511054g

    Article  Google Scholar 

  38. L. Spanhel and M. A. Anderson, J. Am. Chem. Soc. 112, 2278 (1990). https://doi.org/10.1021/ja00162a031

    Article  Google Scholar 

  39. M. Jones, S. S. Lo, and G. D. Scholes, J. Phys. Chem. C 113, 18632 (2009). https://doi.org/10.1021/jp9078772

    Article  Google Scholar 

  40. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Springer, US, 2006). https://doi.org/10.1007/978-0-387-46312-4

    Book  Google Scholar 

Download references

Funding

The studies were financially supported by a grant the President of the Russian Federation for state support of young Russian scientists–candidates of sciences (MK-586.2019.2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. S. Kondratenko.

Additional information

The 2nd International School-Conference for young researchers “Smart Nanosystems for Life,” St. Petersburg, Russia, December 10–13, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kondratenko, T.S., Smirnov, M.S., Ovchinnikov, O.V. et al. IR Luminescence of Polyfunctional Associates of Indocyanine Green and Ag2S Quantum Dots. Opt. Spectrosc. 128, 1278–1285 (2020). https://doi.org/10.1134/S0030400X20080172

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0030400X20080172

Keywords:

Navigation